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Abstract

The numerical solution of full shallow water equations (SWE) including the eddy
viscosity terms is presented. In the first part of the paper the solution of the homo-
geneous part of SWE for discontinuous, rapidly varied flow is reported. The method
presented here is based on Roe idea of numerical fluxes of mass and momentum.
The numerical solution of SWE on unstructured, triangular mesh is reported and
the influence of geometry approximation is examined. The imposing of the boundary
condition on a triangular numerical mesh is described in detail. The consistent with
finite volume method (FVM) approximation of the viscous part of SWE is presen-
ted. The procedure similar to the finite element method (FEM) is used to calculate
the function derivatives inside the finite volumes. The specific difficulties of source
terms numerical integration are studied and some methods to avoid these problems
are presented. To integrate the bottom friction term the splitting technique is imple-
mented. The computed results are compared to analytical solution of Saint- Venant
equations, experimental data and results available in the literature. Good agreement
between these results is observed.

1. Introduction

The shallow water equations (SWE) are the system of partial differential equa-
tions describing twodimensional, integrated along depth, free surface water flow.
This set of equations can be derived from continuity and Navier-Stokes equations
(Sawicki 1998). Unfortunately, an analytical solution of SWE, in most real cases,
does not exist and they must be solved by numerical methods. A lot of classical
methods for solving the water flow equations are known and successfully applied.
Generally they are based on the finite difference method (FDM) (Abbott 1979)
and finite element method (FEM) (Sa Da Costa et al. 1986; Szymkiewicz 1991,
1995). Usually, these methods produce adequate results for continuous, gradu-
ally varied flow. The same schemes are often useless when discontinuities (i.e.
hydraulic jumps) appear. There usually exist some result oscillations near the
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discontinuity and modification of the methods is needed to avoid these compu-
tational difficulties. The unphysical effects are the result of numerical diffusivity
of the schemes. The special versions of the FEM scheme for discontinuous flow
were presented by Katopodes (1984) and Arnold (1996). These modified schemes
produce adequate results but unfortunately their implementation is relatively com-
plicated.

Recently several methods for handling the flow discontinuities were de-
veloped. The basic calculation techniques are known as “shock-fitting methods”
and “schemes with artificial viscosity” (Cunge et al. 1980). In the last two dec-
ades up-wind methods with flux vector-splitting technique (Steger and Warming
1981) and Riemann problem solution (Glaister 1993, Nujic 1995, Ambrosi 1995)
were intensively investigated and applied in hydrodynamics. The method based
on Roe’s (1981) solution of the approximate the Riemann problem for one- and
two-dimensional free surface water flow equations was also studied and reported
by Szydtowski (1998). Previously, the presented scheme was adequate to calculate
rapidly varied flow in regions where the water flow changes from subcritical to
supercritical and vice versa. That numerical scheme handled discontinuity prop-
erly and was of second-order accuracy in space and time in smooth flow regions.
However, the model presented previously was devoid of diffusion of momentum
terms. Of course, for accurate description of both rapidly and gradually varied
flow, the SWE should contain that term as well as the bottom friction and gravity
terms. Previously, the flow equations were approximated by finite volume method
(FVM) but the approximation was limited to rectangular, structured mesh. This
approach produced adequate results when geometry of calculation domain was
regular. Unfortunately, for complex geometry the numerical results of flow simu-
lation were unsatisfactory.

The present paper reports on the construction of numerical model based on
full SWE approximated by FVM on unstructured, triangular mesh. In order to
solve SWE the inviscid fluxes at the cell-interfaces are calculated in accordance
with Roe linearization of the Riemann problem. To estimate the viscid fluxes
between two cells (finite volumes) function gradients at cell-interfaces are needed.
They are calculated in a manner similar to FEM procedure. Because of numerical
difficulties, existing due to abrupt bathymetry and supercritical flow, some special
techniques of source term integration are presented. In the last section of the
paper some numerical tests are studied. For rapidly varied flow numerical results
are compared with analytical solutions of onedimensional SWE and experimental
data. The physical modelling took place in the Hydraulic Laboratory of the Cath-
olic University of Louvain, Belgium. The experimental work was carried out by
Prof. Ives Zech Research Group within the framework of “Concerted Action on
Dam-Break Modelling” (CADAM). In order to validate viscid terms of SWE the
numerical test presented by Stelling (1984) is examined.
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2. Finite Volume Discretization of SWE on Triangular, Unstructured
Mesh

The system of SWE with viscid terms in conservative form (Abbott 1979) can be
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In this system of equations A represents water depth, # and v are the depth-
averaged components of velocity in x and y direction, respectively, So; and Sy,
denote the bed slope terms, Sy, and Sy, are the bottom friction terms, g is the
acceleration due to gravity and v is the eddy viscosity coefficient. The bottom
friction can be described by the Manning formula (Tan 1992):

Spy = nluul + o7 yu e Sy = n’v ul + 2 i (3a, b)
h4/3 y e
Equation (1) can be rewritten as
%+divF+dqu+S=0. 4)
Vectors F and D in equation (4) are given as
Fn =En, + Gny,,Dn =Mn, + Nn, (5a, b)

where n =(n, n,)T is a unit vector.

To integrate the SWE system (4) in space, using the finite volume method, the
calculation domain is discretized into set of triangular cells (Fig. 1). This kind of
approximation gives an unstructured numerical mesh. Each cell is defined by its
centre point and all variables are averaged and constant inside the cell.

After integration and applying the Ostrogradski-Gauss theorem (Bronsztejn
and Siemiendiajew 1973) equation (4) for each triangle cell can be written as
'QAA.-+.¢(Fn) a'L+f(Dn) dL+deA=O (6)

ot
Li L; AA;
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Fig. 1. Discretization of calculation domain by triangular finite volumes (cells)

where AA4; and L; are the area and boundary of cell i. The first term of equation
(6) represents time evolution of conserved variables over the cell. The surface
integrals are total normal inviscid and viscid fluxes through the boundary of cell
1, respectively. The last integral is an integral of SWE source terms. All integrals
in equation (6) can be substituted by corresponding sums of three components as
follows:

ol;

3 3 3
—; A4+ (Fm) AL+§(D,n,) AL+ 844, =0  (7)

r=1 r=1

where F, and D, are the numerical (computed at r*# cell-interface) fluxes and A L,
represents the cell-interface length. S, and A4, are the components of source
terms and area of cell i assigned to r* cell-interface. To simulate the free surface
water flow, equations (7) must be solved inside every finite volume i. Appropriate
sums are therefore necessary and a time integration scheme must be implemented.

3. Inviscid Fluxes

In order to calculate the inviscid fluxes F,, the solution of the approximate
Riemann problem presented by Roe (1981) is used. The computation procedure
is available in the literature (Glaister 1993, Ambrosi 1995, Toro 1997) and was
also reported by Szydtowski (1998), hence only the bases of the computational
method are presented here.

Applying the Roe idea of approximate Riemann problem solution the numer-
ical flux at r* cell-interface can be expressed as

1 -
Fon=2 (FL+Fp) - > & |Xi| Fen, (8)
i=1

N =
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where A4 and Fy are the eigenvalues and eigenvectors of jacobian A = 3F/aU. For
SWE the coefficients ax(k = 1, 2, 3) equal

@1 = 4 — 5 [A (hu)ne + A () ny — (any + ny) AR,
@y = [Ahv — A (hv)]n, — [Ad — A (hu)]ny, (%9a, b, ¢)
& =4 + % [A () ne + A (o) ny — (iny + ny) Ah).
The values of water depth / and velocity components & and v are the Roe averages
and can be calculated as follows
h =
hi ; 5 =C =,/gh,
vhiur + Vhrug
Vhe+vhr
Vhive + hror
VR +Vhr

States Uy and Uy, are defined on both sides of the r*# cell-interface. Generally, the
method proposed by Roe can be used to solve the systems of hyperbolic equations,
such as Euler or Saint-Venant equations. Numerical schemes, based on the Roe
idea of numerical fluxes, are adequate for discontinuous water flows. They also
produce good results for rapidly varied flow due to dam-break (Szydfowski 1998).
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4. Viscid Fluxes

In order to estimate the viscid fluxes D,, which are needed to solve equation (7),
derivatives of velocity components u and v at the r** cell-interface are required.
For two cells i and ii (Fig. 2) the derivative of any function can be approximated
by weighted average of derivatives computed inside the triangles T1 (vertexes
i, ], k) and T2 (vertexes j,ii, k).

For the sake of clarity let us consider only one derivative of one velocity
component u, = du/dx. If the derivatives in triangles T1 and T2 (u!', u’?) are
known, the averaged value at r*# cell-interface can be expressed as

. ulAT! 4y T24T?

b AT 4T
where 47! and 472 are the areas of triangles 71 and T2, respectively. To com-
pute u," the values of derivatives inside both triangles are needed. They can be
calculated in a manner similar to FEM with linear base functions (Zienkiewicz

1972). For instance, the value of u, in triangle T1 (i, j, k) can be approximated
as follows:

(11)

b; b; by
Ti_, Y D
= Ui U ST TG

Uy

(12)
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Fig. 2. Scheme for derivative calculation

where u;, u; and uy are the values of velocity at nodes i, j, k, respectively. Factors
byl =i, j.k) and ¢; (needed to compute the derivatives in y direction) are equal
to

b:=)’;_)’kab;=yk““)’ubk =}’t"‘)’1 (1335 ba C)
Cj =Xk —Xj, € =Xj — Xk, Ck =Xj —X; (13d, e, )

where x; and y; (=i, j, k) are the coordinates of the vertexes i, j, k. Unfortunately,
only at node i are the velocity components known. At vertexes j and & the velocities
must be approximated. They can be obtained by a distance-weighted average of
cell-centre values from volumes surrounding vertexes j and k, respectively. For
instance, vertex j (Fig. 2) is included into six (i, i, iii, iv, v, vi) neighbouring cells
and values of velocity from all these nodes must be taken into consideration. In
a similar manner, the other derivatives of velocity components can be calculated.
Finally, the viscid fluxes at #* cell-interface can be calculated from (2d, e) and
(5b) using approximated derivatives (11) and Roe averaged water depth (10a).

5. Source Terms

The source term vector S (2f) contains two sorts of elements, dependent on bot-
tom and friction slopes, respectively. Both of them pose some numerical integ-
ration difficulties. For instance, after inconsistent implementation of the bottom
slope term, some artificial (unphysical) oscillations of depth and velocity can occur
(Nujic 1995, Goutal and Maurel 1997). To avoid these effects, the source term
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should be up-winded in the same way as inviscid fluxes. This problem was invest-
igated by Bermudez and Vazquez (1994). The numerical source method proposed
by them for the 1D problem was also examined by Szydiowski (1998) for 2D
Saint-Venant equations. Recently, the importance of bed slope approximation has
been reported by Jha et al. (2000).

Applying the numerical source method, each sum component S, in equation
(7) can be expressed as

s, =(1- |A|A-1) $ (UL, Ug, n) (14)

where I is the unit matrix and Roe averages (9) are used to compute the val-
ues of source terms at ## cell-interface. The sum mentioned contains as many
components as neighbouring cells of given volume i exist.

The second source term of SWE (bottom friction term) can be determined
by the Manning formula. Generally, this approach is adequate for steady water
flow, but due to no alternative method it is also used for unsteady flows, produ-
cing satisfactory results. Some difficulties appear when supercritical flow exists.
Applying the Manning formula for flow with great velocity and small depth pro-
duces numerical errors. The very large value of u?/h*3 type terms in equations
(3a, b) usually leads to solution instability. Finally, some unexpected result oscil-
lations destroy the computation. In order to avoid this inconvenience the splitting
technique with respect to physical processes (Szymkiewicz 1993) can be applied.

The SWE system (1) can be written in another matrix form

U

o= X (15)
where vector X contains all terms of equation (1) except for the time derivatives.
The solution of equation (15) can be obtained by integration in time increment
{t, t+ Atr). The general time integration scheme, defining a new function value at
numerical grid time level n+1,

' At
Urtl=u"+ f Xdt (16)
0

after substitution of vector X by the sum
X=X+ Xy (17)

can be transformed as follows

At At
Ut = +fX(1) dt +fX(2) dt. (18)
0 0
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For SWE (1) the vectors X(;y and Xy can be written as

_duh) _ a(wh)

ax dy
a (u2h+0.5gh® 3 (uvh ; ; ; , .
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The solution of equation (18) can be split into two stages. In the first step equation
Al
Ul =up, + f X dt (20)
0

with the initial condition U;,"=U" should be solved. Then, in the second step,
equation

At
U?z-’)-l — U’é) + [ X dt (21)
0

with the initial condition Up)"=U;,"*! must be computed. The solution searched
for at time ¢t+ At is U't! = UY 1. For SWE (1) in the first step all terms except
for bottom friction term are integrated in time. In the second one only that term
is taken into account. It can be seen, considering equations (19b) and (21), that
only discharges (gx=u-h, gy=v-h) are modified at the second stage. Applying FDM
implicit in time, the scheme to solve equation (21) in given cell i two formulas
can be written

2 2
n+l n+l
X — qxﬁJ)r.-l _ rial 2\/ (qx (2)5) A (QY(z)f )
— Ar = aPg® (22a)
At g q 2) e 7/3 B
(h(zn')
n+1 n+l ( x'l+1)2 s ( n+1)2
Do —Day wei oY\ oF qy )i
= g 0 h (22b)
At £ Wy s\ 13 g
(wi5t)

where superscripts n and n+1 denote previous and the next time level on nu-
merical grid, respectively, and subscripts (1) and (2) represent first and second
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integration step. Division of equations (22a, b) by qx?;)'l.l and, qy?;)}l respectively,

yields

x"+.1 yn+.1
2 5,1:1 —1= Koy, q—f,—% — 1=K (23a, b)
ax )i qy Qi
where
n+1 2 n+1 2
5 (qx(Z)i ) + (qy(Z)i )
Koi =gAtn 7 : (24)
()
(2)i
Imposing
1 1
_ 9%, _v B 25
- _.ntl T+l (25)
*ni Do
equation (24) can be rewritten as
Koy = aK)i- (26)

Both equations (23a, b) together with (26) can be written in the quadratic equation
form
Kaie® +a—1=0. (27)

Finally, the second step of time integration procedure (21) is reduced to discharges
correction
1
grey =agxy, = aqx;'f)"il (28a)

Qi =aqylby =aqyll (28b)
where a€(0,1) is no-negative root of equation (27). For no bottom friction case
the coefficient « is equal to unity (» = 0). When bottom roughness exists (¢ < 1)
the absolute values of discharges gx and gy decrease. Thanks to this technique the
bottom friction together with supercritical water flow can be taken into consider-
ation. A similar procedure of friction term integration was presented by Paquier
(1995). The good properties of the method were also reported by Szydiowski
(1998).

6. Time Integration Scheme and Stability Condition

In order to complete the solution of equation (7) a numerical scheme solving
equation (20) must be implemented. The general time integration scheme can be
written as

U = " + A (@xﬂ+I +(1-0) x") (29)

where superscripts # and n+1 denote previous and next time level on the numer-
ical grid. When ©=0 equation (29) is the Euler explicit scheme and when ©=1
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it is the Euler implicit scheme. For ®=0.5 formula (29) becomes the well known
trapezoidal implicit scheme. In the present work the two-step explicit scheme is
used
U? =U" +0.5A:X", (30a)
Ut — U + ArXP. (30b)
This explicit scheme is of second-order accuracy in time and its stability is restric-

ted by the Courant number. For 2D shallow water equations the stability condition
can be written as (Potter 1977)

max (,/uz,-2 +v?+ /8 E') 1
min (d,) /A t = V2

where subscript i denotes the given cell and d, represents the distances between
centre points of cell i and its neighbouring volumes.

P

(€2))

7. Boundary Conditions

A consistent set of initial and boundary condition is required to complement SWE
(1). All conditions must be imposed in accordance with the characteristics theory.
To start the computation the initial values of water depth and both components
of velocity must be known inside every finite volume at time t=0. To impose the
proper set of boundary conditions only the hyperbolic part of SWE (without the
eddy viscosity term) can be considered and solved in boundary regions. Generally,
the boundary of the computational domain is composed of solid and open seg-
ments. In the case of solid boundary the free-slip condition can be imposed. This
means that the normal to cell-interface velocity component, as well as a derivative
of tangential one in the same direction, should be set equal to zero. In the FVM
there is no possibility to set any function value exactly at the boundary. This is
impossible because the grid nodes are located in cell-centre points (Fig. 3).

To impose the boundary conditions correctly, the corresponding fluxes at this
boundary must be computed. In order to calculate the numerical flux through the
boundary of the computational domain, the virtual cell j (Fig. 3) can be defined.
For closed boundaries the flow variables values should be imposed at node j
(outside the domain) as follows

hj = h;, unj = —un;, usj = us; (323., b, C)

where h is the water depth and un and us denote the normal and tangential to
boundary velocity component. Using the states U; and U; the flux through the
cell-interface can be computed by Roe procedure.

At the open boundary the situation is more complex and needs to be treated in
particular. In accordance with the characteristics theory, the number of conditions
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Fig. 3. The boundary cells (real i and virtual j) and velocity vectors for solid wall boundary
condition

imposing at the boundary depends on the local value of Froude number and flow
direction. The four cases at the open boundary must be considered (Tan 1992)

1. supercritical inflow
All characteristics “enter” the calculation domain, so three conditions must
be imposed (water depth and both velocity components).

2. supercritical outflow
All characteristics “come out” of the calculation domain, so no condition is
needed.

3. subcritical inflow
Two characteristics “enter” the calculation domain, so two conditions must
be imposed. In the present work the components of the normal to boundary
velocity are chosen.

4. subcritical outflow
Only one characteristic “enters” the calculation domain, so only one condi-
tion is required at the boundary. Here the water depth is chosen.

The conditions at the open boundary can be imposed in a manner similar
to the procedure adopted for the closed boundary. First, virtual cell j outside
the computational domain should be defined (Fig. 4). To obtain the fluxes at the
boundary cell-interface, the state U; inside cell j must be computed. When this
is known all fluxes can be determined by the Roe scheme. For supercritical flow
there is no difficulty in imposing the function values inside the exterior cell. It is
more complicated for subcritical flow. In the case of subcritical inflow only two
functions are known from boundary conditions (for example the normal velocity
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Fig. 4. The boundary cells (real i and virtual j) and velocity vectors for the open boundary
condition

un; components). The third one (water depth 4;) must be determined in an other
way. It can be obtained using the Riemann invariant (Tan 1992)

unj —2,/gh; = R; (33)

where R; is the value of the Riemann invariant computed basing on known values
from cell i. In the same manner the subcritical outflow can be treated. In that case
only one function value (for instance water depth #;) is known from the boundary
condition outside the calculation domain. The others can be estimated using the
Riemann invariant

unj +2,/gh; = R (34

where R; is determined by function values from interior cell i.

8. Numerical Results

First, in order to validate the inviscid part of SWE three test cases are presented.
The results of simulation of one-dimensional dam-break flow over wet and dry
bottoms are compared to analytical solutions of Saint-Venant equations (Stocker
1957, Ritter 1892). Unfortunately, this kind of solution does not exist for two-
dimensional flow. Because of that computed water depth and velocities for 2D
dam-break flow are compared with results presented by other authors (Fennema
and Chaudhry 1990, Glaister 1993, Ambrosi 1995). The aim of the next tests is
to examine the numerical computation against the experimental, measured data.
First, the results reported by Bechteler et al. (1992) are considered. The physical
modelling results used in the next two test cases are the effect of experimental
work undertaken by the research group at the Hydraulic Laboratory of the Cath-
olic University of Louvain (Soares 1997). For each test the computed results are
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compared with the water level observed at gauging points. In order to evaluate
the capacity of a numerical model to reproduce the eddy viscosity effects the test
case reported by Stelling (1984) is examined.

Test Case No. 1

One-dimensional flow due to idealized dam-break is studied in this test. In the
rectangular, 1.0 m wide and 400.0 m long —200.0 m <x < 200.0 m channel two
different water levels are separated by a gate located at x = 0.0 m. There is no
bottom friction in the channel, water is initially at rest and bottom slope is equal to
zero. The water levels are equal to 6.0 m and 1.0 m upstream and downstream of
the gate, respectively. After sudden removal of the gate the water is released and
the wave propagates downstream. At the same time a negative wave spreads into
the upstream channel. During the simulation the waves do not reach the domain
boundaries. The water flow was simulated using a one-dimensional version of the
numerical scheme presented (Szydtowski 1998). The channel was discretized with
800 cells (Ax=0.5 m) and all calculations were carried out with the time step
At=0.01s.

Test Case No. 2

The simulation was run under the same conditions as the previous one, with the
except of the water level downstream of the gate. In this case the channel bottom
is covered by a 10~ m thick water film.

The numerical and analytical solutions (Stoker 1957; Ritter 1892) after r=10 s
for tests nos 1 and 2 are presented in Figures 5 and 6, respectively. The numerical
solution gives a good representation of exact one in both cases, except for the
contact wet-dry bottom region in test 2 where disagreement of velocities and
Froude numbers is observed (Fig. 6b, d). For supercritical flow (when the upstream
and downstream water depth ratio is relatively large) the mesh should be refined
to obtain better agreement between the numerical and analytical solution. The
disagreement in test 2 is also caused by the fact that the “dry bottom” is the zone
covered by the water film, as the Ritter solution is obtained for a depth equal to
zero.

Test Case No. 3

Two-dimensional flow due to dam-break is studied. The geometry of the compu-
tational domain is presented in Fig. 7. The domain is composed of a 200.0 m long
and 200.0 m wide basin and dam with 75.0 m long non-symmetrical breach. There
is no bottom friction in the basin and the bottom slope is equal to zero. At time
t=0 s the water is at rest and there are two different water levels on each side
of the dam. The water depth is equal to 10.0 m and 5.0 m in the upstream and
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Fig. 7. Test 3 — problem geometry

downstream reservoir, respectively. After a dam-break water is released through
the breach and the wave propagates downstream. At the same time a negative
wave spreads into the upstream reservoir. All the boundaries with the exception
of the outflow (right boundary) are treated as closed, slip boundaries. Numerical
simulation was carried out using a rectangular (Ax=Ay=>5.0 m) and unstructured,
triangular mesh (3280 cells) with a time step Ar=0.1s.
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Fig. 8. Test 3 — water surface after r=7.2 s
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Fig. 9. Test 3 — water depth (a) and velocity field (b) after t=7.2 s

The results obtained using both kinds of mesh were similar. The carpet plot
of water surface after r=7.2 s is shown in Figure 8. In Figures 9a and 9b the
contour plot of water depth and velocity field are presented. These results can
be compared with other numerical solutions available in the literature (Fennema
and Chaudhry 1990, Glaister 1993, Nujic 1995, Ambrosi 1995). The computed
results seem to be similar to each other but unfortunately that kind of graphic
presentation makes assessment of the quantitative result impossible.
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Test Case No. 4

The physical experiment was performed in the Institute of Hydrosciences of Fed-
eral Armed Forces University of Munich by Bechteler et al. (1992). The geometry
of the problem is shown in Figure 10. The channel is 30.0 m long and has a rect-
angular cross section of 2.0 m width. The flat plate (flood plain) is 5.0x10.0 m.
Between the channel and the plate a trapezoidal breach exists, which is closed
with a flap. The Manning roughness coefficient is equal to 0.01 m~'/3 s. The
initial condition is imposed in accordance with the experiment. This means that
there is no water in the “flood plain” and in the channel the water is 0.2 m deep.
The channel walls are treated as closed boundaries, but plate boundaries, with
the exception of that parallel to the channel, are open. After opening the flap
the wave propagates to the plate. The water depth was measured at 29 gauging
points. All these points were installed on the plate and their exact location can be
found in the paper mentioned. The numerical simulation was carryied out using a
rectangular mesh (Ax=Ay=0.1 m) and unstructured, triangular one (3866 cells)
with a time step Ar=0.01s.
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Fig. 10. Test 4 — problem geometry (all dimensions in metres)

The results obtained were very similar therefore, only the first are presented
in this paper. Two different tests were performed by Bechteler’s group. First, the
flood wave on the horizontal plate was simulated. In the second test an inverse
slope (1.8 degrees) of the plate was implemented. The computed and measured
results for both tests are shown in Figures 11 and 12, respectively. The gauging
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Fig. 11. Test 4 — computed and measured hydrographs (horizontal plate)
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Fig. 12. Test 4 — computed and measured hydrographs (increasing plate)

53



54 M. Szydfowski

points previously chosen by Bechteler et al. (1992) are used to compare the results.
Quite good conformity of results can be observed. The measured and computed
wave reach control points at the same time which proves proper reproduction of
the wave front velocity. The position and time of hydraulic jump forming, is also
correctly computed.

The hydraulic jump is represented in Figure 12 as the second sudden increase
in water depth. The numerical simulation of supercritical flow over an initially dry
plate was possible only when the bottom friction term was integrated implicitly.
The other treatment of this source term in regions with very small water depth
always destroyed the calculations.

Test Case No. 5
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Fig. 13, Test 5 — problem geometry (all dimensions in metres)

This experiment was performed in the Hydraulic Laboratory of the University
of Louvain. The definition of the field of the problem is shown in Figure 13.
The experimental setup consists of a reservoir (2.40x2.45 m) and channel with
entrance asymmetrically located in respect of the side of the reservoir. The L-
shaped channel (with 90° bend) is approximately 8.0 m long and has a rectangular
cross section 0.5 m in width. The channel bottom is 0.33 m above the bottom of
the reservoir, therefore, an abrupt step at the channel entrance is present. The



Manning coefficient is equal to 0.0095 m~1/3s. The reservoir and channel are
separated by the gate. The initial condition is imposed in accordance with the
experiment. The water level in the reservoir is 0.20 m above the channel bottom
and the water is at rest. The channel bottom is covered by a 0.01 m water film.
The reservoir and channel walls, with the exception of outflow, are treated as

closed boundaries.
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Fig. 14. Test 5 — computed and measured hydrographs

After removing the gate, water is released and the wave passes downstream.
At the same time, a negative wave spreads into the upstream reservoir. One of
the water level measure points (P1) is in the centre of the reservoir and the others
are located along the channel. The water flow was simulated on rectangular mesh
(Ax=Ay=0.05 m) and unstructured, triangular one (2124 cells) with a time step
of Ar=0.01 s. The obtained results were similar, so only these first are presented

here.
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The computed and measured hydrographs are shown in Figure 14. Consistent
results were obtained. The calculated wave front has the proper velocity and the
hydraulic jump, formed after water reflection in the channel corner, appears where
it is expected. The negative wave (Fig. 14a, point P1) is also in good conformity
with the experiment. No calculation difficulties in the region of abrupt bottom
step were observed during numerical simulation. This good calculation scheme
property proves the appropriate bottom slope term approximation.

Test Case No. 6

This experiment was also performed in Hydraulic Laboratory of the University of
Louvain and it is very similar to the previous one. The geometry of the problem
is shown in Figure 15. Only one important difference in laboratory equipment

exists. The experimental setup is composed of a channel with a 45° instead of 90°
bend.
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Fig. 15. Test 6 — problem geometry (all dimensions in metres)

The experiment is run with the same conditions as the previous one, except
for the water level in the reservoir. In this case the water surface is 0.25 m above
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the channel bottom. The gauging points are located along the channel and G1 is
in front of the channel entrance.
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Fig. 16. Test 6 — computed and measured hydrographs

Numerical simulation was carried out using a rectangular mesh (Ax = Ay=
0.05 m) and unstructured, triangular one (2346 cells) with time step At=0.01 s.
The results obtained for both meshes differ greatly from each other. The computed
and measured hydrographs are shown in Figure 16. The results calculated on
rectangular mesh are inconsistent with the experimental data. The hydraulic jump
formed in the channel bend and moving upstream is stronger than that observed.
This unexpected effect is the result of poor boundary approximation in the band
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region (Fig. 15). The conditions imposed at the stepped-line boundary generate
the spurious, unphysical results. To avoid this undesired boundary influence, the
geometry of calculation domain is approximated by unstructured mesh. The results
calculated using triangular cells are in good conformity with measurements.

Test Case No. 7
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Fig. 17. Test 7 — problem geometry
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Fig. 18. Test 7 - flow fields after 10, 30, 180 s for inviscid flow (a, b, c) and after 60 s for viscid
flow (d)

In order to validate the full SWE, including the eddy viscosity term, the numerical
test reported by Stelling (1984) is studied. The geometry of computational domain
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is shown in Figure 17. The channel (basin) is 1500 m long and has a width of 300
m. The 150 m long jetty is located 325 m from the left boundary of the domain.
The Manning coefficient is set equal to 0.026 m~'/3 5. Initially, the water is at rest
and the depth in whole channel is 25 m. The boundary conditions are imposed as
uniform velocity of 0.5 m/s at the left boundary and constant water depth 25 m
at the right one. These conditions produce a steady state problem during water
flow simulation. The numerical calculation was carried out using triangular mesh
(1654 cells) with the time step At=0.25 s.

The results of calculation are presented in Figure 18. The flow fields shown
in Figures 18a, b, c represent the velocity evolution of inviscid flow. The length
of eddy, behind the jetty, grows and the steady state is reached very slowly. It can
be observed after =180 s (Fig. 18c). The computed results for viscid flow (eddy
viscosity coefficient set equal to 10) are shown in Figure 18d. The eddy is shorter
than in the previous simulation and the steady state is formed quicker. It can
be observed already after t = 60 s. The results presented are in good qualitative
agreement with those obtained by Stelling.

9. Conclusion

The finite volume method based on unstructured, triangular mesh for SWE was
studied. The numerical scheme, presented in this paper, can be used to solve
shallow water equations for both rapidly and gradually varied flow. The numer-
ical solution for the first kind of flow posed four main difficulties. It had to handle
the discontinuities (wave fronts, hydraulic jumps) and provide an accurate solution
for flow over a abrupt bottom. These two aims were ensured by applying the Roe
idea of numerical fluxes and Bermudez and Vazquez idea of numerical sources, re-
spectively. The importance of adequate computational domain representation was
underlined. For some cases, the poor geometry approximation (rectangular mesh)
produced unexpected, unphysical results. These numerical errors were caused by
improper boundary condition imposing. There is no possibility of imposing the
proper physical condition on rectangular mesh at every segment of the complex
boundary. To improve the computations, the triangular, unstructured mesh was
implemented. This kind of numerical mesh ensures the consistence of mathemat-
ical and physical boundary conditions and the flexibility of domain approximation.
Even complex boundaries can be precisely represented by triangular cells. There-
fore, thanks to these properties, the finite volume method based on triangular
cells has the advantage of FEM keeping clarity of FDM. The fourth numerical
difficulty, the instability of SWE numerical solution due to bottom friction term in-
tegration, was avoided by splitting technique. The water flow equations were split
with respect to physical processes. This approach reduced the time integration of
inconvenient source term to simple discharge correction. In order to simulate the
gradually varied flow the full SWE should be solved. The viscid terms included in
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SWE were integrated in a manner consistent with the finite volume method. Ne-
cessary function derivatives were approximated as in FEM. The numerical results
of water flow simulation were compared with some analytical solutions, exper-
imental data and results available in the literature. Generally, for rapidly and
gradually varied flow good conformity between these results was observed. The
numerical model produced sufficiently accurate results for advection dominated
problems, e.g. the dam-break flood flows and properly reproduced eddy viscosity
effects. The good properties of the numerical scheme presented and satisfactory
computational results proved the effectiveness of the proposed method for both
rapidly and gradually varied water flow.
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