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Abstract

The paper deals with the problem of vortex motion of an incompressible perfect fluid
in bounded domains. The research is confined to chosen cases of steady velocity fields
within rectangular, circular and elliptic regions with rigid boundaries. The solution
to the initial-value problem of the fluid flow for the assumed velocity fields is the
primary object of this paper. It is demonstrated that individual parttcles of the fluid
have their own periods of motion and thus, one should be careful in describing such
problems by means of discrete methods, especially in the Lagrangian variables. The
problem discussed has its origin in numerical analysis of water waves by means of the
finite difference or the finite element methods.

1. Introduction

In analysis of water gravitational waves we usually assume that the fluid is inviscid
and incompressible and the flow irrotational. The main difficulty of the analysis
is associated with a solution to the non-linear boundary value problem for the
free surface which is a moving boundary of the fluid domain. Similar difficulties
emerge in the description of a fluid-structure dynamic interaction through the
common boundary of the fluid and structure. Because of the difficulties, we have,
‘as yet, no general solution to these problems. Therefore, for many important cases
we are forced to resort to approximate, discrete descriptions of the original task,
for example, by means of the finite difference or the finite element method. With
these methods a continuum is replaced by a discrete space of nodal points of an
assumed net and the problem is reduced to a system of algebraic equations.

The literature of the subject i is considerable. The problem of finite element
description of incompressible material was discussed by Fried (1974). In order
to improve the condition of the stiffness matrix of the considered system, the
incompressibility of the material was introduced gradually into the numerical
procedure developed in the paper. An important contribution to the problem
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of incompressible finite elements was supplied by Argyris, Dunne, Angelopoulos
and Bichat (1974). In particular, the authors pointed out, that finite elements in
which the incompressibility condition is satisfied are especially sensitive to bound-
ary conditions. Gartling and Becker (1976) developed numerical procedures for
the analysis of two-dimensional flows of viscous incompressible fluid by the finite
element method. The finite element vibration analysis of a fluid-structure system
may be found in Kiefling and Feng (1976) where both the kinetic and potential
energy of the fluid were expressed as functions of nodal displacements. The for-
mulation has lead to an eigenvalue problem of the system mentioned. The authors
found out that the formulation results in spurious modes of vibrations and the
number of so-called ‘circulation modes’ increases as the mesh becomes finer. A
similar, displacement method for the analysis of vibrations of a fluid-structure
system was developed by Hamdi, Ousset and Verchery (1978). An introduction to
numerical treatment of the fluid-structure interaction problems may be found in
Zienkiewicz and Bettes (1978).

With respect to the above, the incompressibility of the fluid and lack of shear
stress within it are responsible for the condition of the stiffness matrix of the
system equations. In particular, in discrete description of the irrotational motion
of the incompressible fluid it is difficult to protect the solution against vortical
velocity components appearing. Such a situation frequently appears in discrete
analysis of water waves, especially with finite amplitudes. Certain information
about the phenomenon may be obtained by analysing auxiliary problems of vortex
motion of the fluid. It has therefore been found worthwhile to investigate the
problem of vortex motion of the inviscid incompressible fluid. In order to simplify
the discussion we confine our attention to inverse problems in which the velocity
fields in the fluid domains are known in advance. With respect to the Eulerian
approach only steady velocity fields are considered. The paper aims to calculate
fluid paths and answer the question concerning periods of motion of individual
particles. The assumed particular forms of the velocity fields enable us to derive
analytical formulae describing the fluid paths. Nevertheless, since we are also
interested in calculating the periods of motion for chosen particles, the derivation
of the paths is obtained by means of numerical integration of the velocity fields.
Thus, the most important object of this paper is to solve the initial-value problems
for the steady velocity fields. The results obtained afford better understanding of
difficulties in discrete formulation of water waves, especially problems associated
with proper description of the free surface. At the same time, the pictures of fluid
paths calculated in the present paper inform us about possible deformations of
finite elements in the Lagrangian formulation.
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2. Formulation of the Problem for a Rectangular Region

Let us consider the plane motion of an ideal fluid in the rectangular region shown
in Fig. 1. It is assumed that we are given the following steady velocity field

ux,y)= d_x = ZA,, sink,,xcosl,,y, n=1,23 .
I (1)

v(x,y) = é— = ZA,. cosknx sinlpy, ky = — ln =4

where (x,y) are Cartesian coordinates and A4, are constants.

Fig. 1. Rectangular fluid region and coordinate systems

The assumed velocity satisfies the boundary condition that the normal com-
ponent of the velocity is equal to zero at the domain boundary. Simultaneously,
from the equations it follows that the divergence of the velocity field equals zero
and thus, the condition of the fluid incompressibility is also satisfied. The trigono-
metric series (1) represent a set of functions depending on a particular set of the
constants A,. For our purposes it is sufficient to confine our attention to a single
component of the series, for instance, the first component

dx Ty

u(x,y)—dt dsmz—oos R o)
dy H 7nx ., &y

e T e s o

where d is the constant amplitude of the velocity.
Knowing the velocity it is a simple task to calculate the single component of the
fluid vorticity

., He Y |t ™% i 22,
Q= dH[l+(/L)]smLsmH. 3)
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Having the velocity (2) we can calculate the fluid acceleration and, from the
momentum equations, the fluid pressure. Assuming, that the y axis is directed
vertically upwards, the pressure is expressed as

1 .| 27x (H\* 2ny
p-——4pd |:cosT+(I) cos—F - pgy +C, (4)

where p is the fluid density, g is the gravitational acceleration and C is a constant.

In order to find the fluid paths, it is assumed that at a chosen instant in time,
say t = 0, the names of the particles are their coordinates x and y. Therefore, in
order to calculate the particle positions at an arbitrary instant # > 0 we have to
solve the non-linear system of the ordinary differential equations (2). In the first
step it is necessary to investigate the solution in the neighbourhood of the corner
points P;, P, P; and P4 and point Ps where the velocity equals zero. Thus, let us
consider now the corner point Pj(x =0,y = 0) together with its small vicinity.
Expanding the right hand side terms in (2) into power series with respect to
x and y and retaining only the linear terms one obtains

dx dn dy dn
& L gt =l ®)
The integrals of the equations are
x(t)=Cyexp (EEI) Y () =Cexp (—d%t) , (6)

where C; and C; are constants of the solutions.
Elimination of the time factor from the equations provides the trajectory equation

X -y = const. (7

It can be seen that the corner point P; is an isolated unstable stagnation saddle
point. Similar results and conclusions hold for the remaining points P, P; and Py.
In order to examine the solution in the vicinity of the point Ps it is convenient to
shift the coordinate axes to this point. Denoting the new axes as x; and y; and
applying the afore-mentioned procedure to the neighbourhood of the point, the
following equations are derived

dx; _ dn_ dy, _dn (H)?
@ - A e -wE\I) ™ i

wherex =% +xjandy = £ +y,.

The solutions of the equations may be written in the following form

x1=Acosrt + Bsinrt,

©)

y1= %(Asinrt — Bcosrt),
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where: r =dn/L and A and B are constants.
Elimination of the time factor from the relations gives the equation of ellipse

(%)2 + (%)2 = const. (10)

It is seen that Ps is the neutrally stable stagnation point. Fluid particles in the
small vicinity of the point (small values of |x;| > Oand |y1] >0 move along elliptic
curves around this point and thus, this point is called a centre (Kaplan, 1958).
With respect to the above results, we shall confine our attention to a solution of
the non-linear differential equations (2) in the fluid domain without these singular
points. To do this we apply a discrete numerical integration procedure in the time
domain. In the integration, it is assumed, that the continuous parameter (time) ¢
is substituted with a sequence of the discrete time steps: 0, At,2At,3At. Denot-
ing by n the level of time (1, =n-At,n=0,1,2,..), we can write the discrete
representations of (2) in the following form

1 . TX T
= Atd sin 220t oo TYnt1

+u

xn+], = 2 L H ns (11)
1 H AXntl . TYntl
= ——Atd—
Yn+1 3 td 7 oS 7 sin i + U,
where
Uy =Xp + %Am’sin %’—’cos N—-I);I,
(12)

1 H
Up = Yp — EAtd-I:cosn—zisin HI):’"'

In order to solve equations (11) we make use of an iteration procedure at each
level of time. If 7 is the number of iterations, then the numerical procedure reads

r) r)

1 . T T
xf:l” = EAtd sin EH cos );';“ + uy,
1 H (r) r) (13)
X . my
,E”:ll) =t Atdz Cos E“ sin I’}“ o+ Uiy

With respect to the equations, the time step At should be small enough to protect
the stability of the procedure mentioned. The stability is preserved if the following
inequality holds (Bj6rck, Dahlquist 1983)

p(A) =max | (A)l <1, 1<i <2, (14)
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where p(A) is the spectral radius and A; are eigenvalues of the matrix A defined

N r+1) (r+1)
r+ r+
3"cn+1 axn+1

(r) ")
ax1v1+1 dy

A= M I (15)
r+1) r+1)
Wps1 Wppy
(@) )
a"'-.'M-l ayrlr-l-l

From substitution of (13) into (15) it follows that
r) ) (r) r)

w X Ty T . X .y
oS n+1 coS n+l sin n+l sin n+l
1 L L H H L H
g ) ) ) ") (16)
r
ﬂ sin Msm% e £ cos Hx’H'l cos Hyn+1
12 L H L L H

It is a simple task to calculate the eigenvalues of the matrix and finally, the relation
(14) is transformed into the following form

3 2|
1,7 Xy Ty
p(A) = EAtdZ max CoS T — | s T < 1. (17)

The stability condition of the numerical procedure leads to the inequality:

2L
At < — (18)
which is not a strong limitation for the time step.

Following the equations derived, numerical calculations have been performed.
Some of the results obtained in this way are presented in the subsequent figures
2, 3 and 4. In Fig. 2 the trajectories of chosen particles are depicted. Each of the
particles has its own period of motion. The last feature is illustrated in Figs. 3 and
4 where the plots show the horizontal and vertical components of displacements
of the particles as functions of time. It can be seen from the plots that the distance
between any two neighbouring particles may grow in time to a diameter of the
corresponding path.

3. Fluid Paths in Circular and Elliptic Regions

To learn more about the subject, solutions to the flows in circular and elliptic
regions are presented. Now we have smooth boundaries of the fluid domains. In
accordance with the shape of the regions we apply the polar and elliptic systems of
coordinates, respectively. Let us consider first the circular area shown in Fig. 5a.
With respect to the polar coordinates r and ¢, the velocity vector is expressed as

V=r-8+¢-ay, (19)
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3
1 ¥ Relative periods of motion: T1=1, T2=0.7985,
T3=0.6800, T4=0.6182, T5=0.5692,
T6=0.5346, T7=0.5104, T8=0.4943.
H=Li2
P4 ; P3
PS5 |
YTURJTIE B A 32 h
P1 P2 x
00 1 T T T T T T =L
Fig. 2. Particle paths in rectangular region
4
x*(t) Relative periods of motion; T1=1, T2=0.7985,

T3=0.6890, T4=0.6182, T5=0.5692,
T6=0.5346, T7=0.5104, T8=0.4943.

| | L | l p 1=t

x*=x-L
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Fig. 3. Horizontal displacements of particles
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y'(t)
4 H2
Relative periods of motion: T1=1, T2=0.7985,
T3=0.6890, T4=0.6182, T5=0.5692,
1 T6=0.5348, T7=0.5104, T8=0.4943.
N y'=y - H2
6
- 7
8
0.0 ,
-Hi2

Fig. 4. Vertical displacements of particles

where a; and @ are the base vectors of the coordinate system and |a;|=
1 and |a;| =r. As in the previous case, the following velocity field is assumed

rm
F = dr sin — sin 2¢,
F =dr sin —sin2¢

o —d(2sin ™" 4+ " rmw 2 (20)
Q= ( smF+Fcos—§-)co ©,
where d has the dimension s~!.
One can check, that
1[0 d
jov=— | —(r¥ —re)| =0 21
divv . [ar(rr)+ a‘p(rqo)] (21)

and thus, the assumed fluid incompressibility is preserved.

In order to integrate Eq (20) with respect to time, in the first step we have
to investigate solutions of the equations in small vicinities of stagnation points
at which the velocity is equal to zero. It can be seen that at points ¢ = 0 and
¢ = n/2 the radial component of the velocity equals zero. At the same time, from
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Fig. 5. Circular and elliptic regions of fluid

the second equation of (20) it follows that at point r = rg for which

. TQW  rom __ rom
2 —_— i —_— 0, 22
sin — - R SR (22)
the second component of the velocity is also equal to zero. A numerical solution
to this equation gives
2.28893

s

The point P (¢ =0,r =rg) is the stagnation point. Therefore, because of the
symmetry, we have also the second singular point Q(r =rg, ¢ = 7) of the same
features. Apart from these isolated points we have zero velocity at points ¢ = /2
and thus the vertical diameter of the circle is the stagnation line. As in the previous
cases we examine the solution within small neighbourhoods of the singular points.
Thus let us consider now the fluid flow in the small vicinity of point P. For our
purposes it is convenient to calculate the velocity components with respect to the
Cartesian coordinate axes

~s

ro R. (23 )

. dx drm rmo . 2
= E = ——R COS Fl" Sin ¢ COos™ ¢, (24)
y= fil =drcosrp(23in£+ﬂcos££cos2fp).
dt R R R

In the small vicinity of the point (¢ = 0,r =rg) we may use the approximate
relations

=t (o).

(25)

— = (2sm%+%ms%)x.
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Shifting the Cartesian coordinate axes to this point, the following equations are
obtained

‘ﬁ |
‘%‘- = Bx 1

where r Erg+8=x =rg+x3,y =y and

_ row [rom 6w 1 rom\21] o ,rom rom
A—dCOS'—R- -IT+?|:1+E(—) :“—d COs

B =d%¥ cos F [3+%(5‘R’1)2] ,
The solution Eqs (26) can be written in the following form

x1(t) = Cj cos Bt + C; sin ft,

i) = \/g(cl sin Bt — C, cos Bt) , 45}
where g2 = AB > 0, and C; and C; are constants.

Elimination of the time factor from the equations leads to the equation of ellipse.
It means that this isolated stagnation point is neutrally stable and the flow around
it is similar to the one in the vicinity of Ps in Fig. 2. Examination of the solution
in the vicinity of the vertical diameter of the circle leads to the conclusion that the
points of the line are also neutrally stable. The fluid paths do not touch this line.
The solution of the non-linear equations (20) within the circle domain, except for
the singular points, may be obtained with the help of numerical integration of
the equations. The numerical procedure of the solution is similar to that applied
to the rectangular region. In order to establish the stability condition for the
procedure mentioned, one may apply the Gerschgorin theorem (Bodewig 1959)
which enables us to estimate the bounds for the spectral radius corresponding to
the relevant matrix A of the iteration procedure applied. In the case discussed,
the Gerschgorin theorem leads to the following restriction for the time step:

2
st 7

The inequality obtained may be improved by more detailed examination of the
eigenvalues of the matrix A. Numerical integration of Egs. (20) gives the fluid
paths of chosen particles. Some of the paths obtained in this way are depicted in
Fig. 6. Each of the marked particles has its own period of motion.

Let us consider now the fluid motion within the elliptic region shown in Fig.
5b. In this case it is convenient to introduce the elliptical system of coordinates
(n, ¢)) and write

(29)

r=ux-€ +y € =a (coshncos gé; + sinh n sin p€;) , (30)
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y Relative periods of motion:

T1=1, T2=0.433,
T3=0.315,T4=0.270,
T5=0.250.

Fig. 6. Particle paths in circular region

where n = const. defines an ellipse and ¢ =const. describes a hyperbola.
With respect to the coordinate system introduced, the boundary of the region is

defined by the ellipse n = ng. The base vectors a; and @, of the system are

@1 = a (sinh n cos €, + cosh 7 sin &), 31)

a; = a (— cosh 5 sin ¢&é; + sinh n cos ¢&;) .

On the basis of the equations the covariant components of the metric tensor are
(32)

obtained
gl =gn=a* [( cosh )? — (cosqa)z] » 812=821=0

The determinant of the tensor is
2
g =a* [(cosh n)? — (cos rp)z] - (33)

The velocity vector for this case is expressed in the form
7= i + g, (34)

where |51| = ]ﬁgl = 48. :
In the case discussed the velocity components in the equation are assumed as
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follows

. _dn_ d (rrn)z. .
— | — } sin — sin 2¢,
"mar T 7 \no no %

. _de dm 2(1!:7) oin =8 . (’”’)Zcosﬂ (eon )t =
EAU T &m o n -\ 1o 1o ik
For the velocity field, the following relation holds (Green, Adkins 1964)
e ! 9 .
mw=——-—«@m+—4w@)=
o L T (36)
2 on L Te
\/_(r] sinh 2n + ¢ sin 2¢) + 20

This means that we are dealing with motion of an incompressible fluid. One can
check, that in the limit n — 0 in Eqs (35) (in the Cartesian co-ordinates 0 <x <a
and y = 0) the velocity components equal zero and thus, points n = 0 form the
stagnation segment. The vertical axis of the ellipse ¢ =7/2 (x =0, —b <y <
—b) is also the stagnation line. In addition, for ¢ = 0 and n = n, for which

TNy Mg 5 TTNs

os — =0 37
no no no

we have the stagnation point ny =2.28893.n9/7. In accordance with the
Cartesian coordinate system, for the stagnation point the following inequality
holds

a < x; < by, =a coshny. (38)

As in the previous case, we have two symmetrical stagnation points: P(n = n;, ¢ =
0) and Q(n = ns, ¢ = 7). To examine the solution within the small vicinity of P
it is convenient to substitute n = n; 4 ¢ into Eqs (35). Then, expanding the right
hand side terms of the equations into power series with respect to small quantities
¢ and ¢ and retaining only the linear terms, the following is obtained

de do
= = 39
= —Ap =0, ;7 + Be =0, (39)
where
2
A=A = Lz (rrm) sin 2 > 0,
a?sinh“n; \ 1o no

(40)

2
1 (m?s) cos 2 . 0,
2\ no 0

d 7 \? s
B = B( >z——(—) 3t
s a’sinh®ng \mo/ mo
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The solutions of the differential equations (39) may be expressed as follows

e(t) = Cjcos gt + Cysin Bt,
(41)
o) = —\/g(Cl sin 8t — C; cos fit) ,

where C; and C; are constants and g2 = AB > (.
Knowing the Cartesian coordinates: x; = a cosh 5, and y; = 0 of the point P and
shifting the coordinate axes to this point (x; =x —x;, y; =y) we obtain

x1(t) =x —x; = asinhnse(t),
(42)
y1(t) = asinhnsp(t).

Elimination of the time terms in Eqs (41) and (42) leads to an ellipse equation.
As in the previous cases this point is the neutral stability stagnation point. The
same character of the solution is valid for point Q.

In order to perform numerical integration of Egs (35) within the elliptic region,
except for the stagnation points, it is convenient to introduce the new variable

E=mn/no (43)
and rewrite the equations in the following form
£ = i _ﬂgz sin £ sin 2¢,
j’ "’f"/_ (44)
. ' nd 2
— = ——(2Esin& + £2 cos &) cos?
== m f( £ sin§ + §“ cos§) cos” g.

)

In numerical integration of the equations in the time domain we apply a procedure
similar to that used in the case of the rectangular region. In order to ensure the
stability of the procedure mentioned one can apply the Gerschgorin theorem
which enable us to calculate the relevant bound for the time step. Numerical
integration performed for this case gives paths of fluid particles. Some of the
results obtained in computations are illustrated in Fig. 7, where the chosen paths
are plotted. As in previous cases, the individual particles of fluid have their own
periods of motion.

4. Concluding Remarks

In the preceding sections numerical solutions to the plane, initial bundary value
problems of the steady vortex motion of the fluid have been presented. Numerical
calculations have shown that for the considered cases of closed fluid paths, the
individual particles of fluid have their own periods of motion. It means that any
two particles which at a certain moment of time are only at a small, but finite
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A

Relative periods of motion: T1=1,
T2=0.1897, T3=0.1090,
T4=0.0476.

Fig. 7. Particle paths in eliptic region

distance from each other, may depart to a relatively large distance from one
another at a later moment in time. The last feature may be important in discrete
description of the phenomenon. For instance, in calculating the fluid motion a
natural way is to choose some material particles as nodal points of finite elements
and follow the points in the time domain. It may happen, however, that the
displacements of the nodal points will lead to such gross distortion of the elements
that it will be impossible to get a unique numerical solution. Another difficulty
may appear in the neighbourhood of the singular points where the concentration
of the fluid paths take place. In discrete integration of such cases in the time
domain it may occur that a nodal material point of a moving net may jump from
one path to another. Such cases may appear in numerical calculations of water
gravitational waves, especially with finite amplitude, described in the Lagrangian
variables. Therefore, in discrete description of water waves a better way is to use
the Eulerian formulation corresponding to nodal points fixed in space.
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