Archives of Hydro-Engineering and Environmental Mechanics
Vol. 47 (2000), No. 14, pp. 75-97

The Numerical Solution for the Problem of Heat and Mass
Flow in the Soil Heated with Warm Air

Bogustaw Bozek*, Stawomir Kurpaska**

*Faculty of Applied Mathematics, Technical University of Mining and Metallurgy, Cracow, Poland
**Department of Agricultural Engineering, Agricultural University, Cracow

(Received September 18, 1998; revised Juny 16, 2000)

Abstract

In this paper a difference method of solving the system of differential equations is
presented for differential equations, describing the distribution of temperature and
water content in the greenhouse substrate heated with a system of heating pipes. The
algorithm of solving the proposed method (explicite-implicite difference scheme) is
presented. In addition, the effects of temperature and water content changes obtained
from the solution of proposed the model as well as the model where the thermal
diffusion of mass was included were compared.

Notation

a — coefficient of heat diffusion,

- water vapour content in the heating air,
Cm — water vapour content in the soil,
Clm - water vapour content in the air directly containing soil

particles,

cl — water vapour content in the ambient air,
n - normal to the pipe surface,
ug — water content of the soil,
C — volumetric thermal capacity,
D — coefficient of moisture diffusion of the soil water,
Dy — thermal moisture diffusivity as vapour and liquid,
Dy — isothermal moisture diffusivity as vapour and liquid,
K — conductivity of the soil water,
L — latent heat of evaporation of water,
S(ug) - water consumption of by plants per unit,

T — temperature of the heated air,
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T — temperature of the soil,

yi - ambient temperature,

o, o — heat transfer coefficient in natural and forced convection,
am, o, — mass transfer coefficient in natural and forced convection,
A — thermal conductivity of the soil,

Kuw - specific heat of the soil,

T — time,

X1, X2, M. M2, S1, 82 — technical date of the repeatable element of the
soil heating system.

1. Introduction

There are many factors influencing the crop yield of plants grown under the mon-
itored conditions in greenhouses; the optimum temperature of greenhouse beds
is, for example, a requisite. Heating by warm air is one of the technical solutions
to carry out the target function (raising the soil temperature). Warm air is fed into
a soil through perforated pipelines buried in it (Bernier at all. 1988; Boulard et al.
1989; Kurpaska, Slipek 1994; Mavroyanopoulos, Kyristis 1986). The heated and
undersaturated (with water vapours) air flows through soil pores and capillaries
causing the space-timely increase of soil temperature. This proceeds until a ther-
modynamic quasi-equilibrium is obtained. Another physical phenomenon which
does not depend on temperature changes and which occurs during the heating
process is continuous development of a drying front drifting towards the bed layers
lying at a distance from the symmetry axis of the perforated pipelines.

All the factors influencing the physical phenomena generated while heating
the soil by warm air can be divided into the following categories:

— physical parameters of heating air (temperature — T, water content in air
- ¢) and ambient air (temperature — T; and water content — c;), and (in
consequence) the heat and mass transfer coefficients on the boundary sur-
face: the upper layer of the soil (the environment) and the heating pipeline
(surrounding soils) ay, aim, o, tm,

— technical data of the heating pipe installation (the diameter, the depth of
heating pipelines location - d, k),

- soil material features (thermophysical properties and water conductivity of
soils - a, Ky, A, D, K = f(ug)).

Physical processes (heat and mass transfer) generated during the flow of un-
dersaturated air through soil pores and capillaries constituted the objective for
mathematical modelling, however, in those formulated models, the heat and the
mass transfer were separately considered (Boulard, Balie 1986; Hanks et al. 1971;
Van Keulen, Hillel 1974; Brandt et al. 1971; Van der Ploeg 1974; Walker 1982).
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Ahmed et al. (1983), Bruger (1984), Kindelan (1980), Merbaun et al. (1983),
Parker (1981), Pile et al. (1978) and Puri (1987) analyzed the combined heat and
mass transfer in soils heated by a system different from the one as described in
the present paper.

To describe the simultaneous heat and mass transfer, the authors employed a
model evolved by Philip and de Vries (1957) and based on the basic hypothesis
assumed by them that the combined thermodiffusive mass transfer occurs in form
of fluid and vapour. Due to lack of complete characteristics of the convective heat
and mass transfer coefficients (thermal and isothermal coefficients of liquid and
vapour diffusivity) in the relevant literature it is rather difficult to adequately and
fully utilize the cited model.

The analyzed horticultular substrate (usually utilized in a greenhouse produc-
tion) consisted of the following ingredients: peat, tree bark and pearlite. Thus,
it is impossible to determine the convective transfer coefficient with a theoret-
ical method, and an experimental identification seems to be a very uphill task
requiring a specialized equipment (Jury and Miller 1974).

Because of these impediments, an optional model (based on equations of
heat and mass convective transfer, generally employed in drying technology) is
introduced in the present paper; it describes physical processes occurring while
heating the soil beds. The convective heat and mass transfer (in natural and
forced convection) was determined from the correlation equations implemented
in chemical engineering.

The analysis was performed in a two-dimensional repeatable element of the
heating system under analysis (Fig. 1). This means that the entire studied area of
heating installation can be covered with sub-areas conforming to border insula-
tion terms. The perforated heating tube was placed in the symmetry axis line of
repeatable element. Thus, there is no gradient of water content nor of temperat-
ure (Neumann’s conditions) contained in the symmetry axis between the heating
pipelines. Heat and mass transfer within the analyzed bed was described and veri-
fied for the repeatable element which was constructed as a soil duct (canal) with
insulated (by polystyrene and PE foil) bottom and side parts. A diagrammatic
drawing of the test stand is shown on Fig. 1.

The description of processes occurring in the heated substratum shall be car-
ried out relying on the concepts proposed in the theory presented in Luikov
(1975). According to this theory, the local change of water content (dug) in the
heated substratum consists of two effects: the transport of liquid phase (dugr)
and water steam developed in effect of phase transformation of soil water (dugy).
Thus the following formula applies:
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Fig. 1. Analyzed repeatable element of the soil heating system

Considering the conversion of water into water steam (g) in the form & =
dugy /dug while 0 < ¢ < 1, equation (1) can be formulated as follows:

Applying the law of mass conservation in the body (of o, density) and finite
volume V limited by the surface A, the non-stationary field of water content inside
it can be defined by the following equation:

du A du

Considering the relation defining the stream of mass, with respect to the li-
quid phase (qug), in the form: qu; = —Dy p;(Vug + 8§VT,), having applied proper
transformations and adopted the assumption that the value of thermal gradient
coefficient of water transport (8) in the course of heating remain quasi-constant,
the following is received:
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a) for liquid phase:

ou . du
a—: =div (DLVug + DLSVT;;) + E-d—rg; (3a)

b) for water steam:
9
£ = div (Dy Vg + DysVE), (3b)
T
where: D;, Dy are respectively the coefficient of mass diffusion in the form of
liquid (D) and steam (Dy).

Having adopted the assumption about insignificantly low impact of temper-
ature gradient in the studied space ¥ upon the water transport process, and
combining equations 3a and 3b (according to equation 1), the classic Fick law
formulation is received, which - for the iso-thermal process of water transport in
the body of capillary, colloidal and porous structure, adopts the following form:

dug 2
P DV-u,. (3¢c)

In the case of substratum (where D is coefficient of moisture diffusion of the
soil water) both in the form of liquid and water steam is the function of water
content in substratum) the following is obtained:

Mg 0 o] 8wy
= i [P ]+ 5 [puo B ] - s, @

This equation, when supplemented with source element, defining the consump-
tion of water by the plant, was verified by Watson (acc. Kaniewska and Kowalik,
1979); the authors obtained satisfactory consistency between the solution and
measurements.

The differential equation defining the temperature field in studied body
volume V, results of the assumption that the stream of heat used in heating
the water-steam developed by phase transformation of soil water, is insignific-
antly small in comparison to the heat required to warm up the liquid phase, while
the temperature of liquid and steam in every point of the body is equal to its
temperature. With these assumptions, the change of enthalpy in the finite volume
V' is equal to the sum of the divergence of the heat stream vector and the power
of internal stream of heat source (g,). The equation defining temperature field
must consider both the heat stream contained within the material and the stream
developed through the existence of internal heat source generated by water ap-
pearing in the process of phase transformation. Similarly to the above formulated
equation of water movement, the equation defining temperature field in heated
body can be presented as follows:

B(prrg) _ aug
sk V(AVT) £ q.eps et %)
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Formally, the (+) sign standing before the second element of equation (5) appears
in the case when heat is generated in the process of steam condensation, while
(=) sign appears in the case of receiving heat from the body in the course of
evaporation.

Considering the relation defining the heat source and having introduced the
concept of substratum heat capacity L, the specific heat of the soil «,,, after the
assumption about iso- thermal character of A coefficient is adopted, and in result
of transformations written in equation (5), the following is obtained:

T, L 9
SE=aV + e——m% (6)

Thus, the description of non-stationary fields of water content and temperature
in studied process relies on equations 4 and 6. Equation 6 is often used in the
process of drying the agricultural produce (Pabis 1983).

Initial conditions:
T; (x,y,0) = Tyo = const. )

ug (x,y,0) = ug, = const. 8)

The real heat and mass transfer, having a convective character from heated air to
the soil bed particles, was included in the boundary conditions in form of:

a7, ou
AL =0(T, -T) and Ka—;=0t1m(c1m—6‘1) at: y = x1; 9

ady
% =0 and i =0 at: x=-m and x = ny; (10)
ox Bx

aT, dug
% 0 and ay at: y=-x2 (11)
_Aifg= o(T—T,) and _Kaﬁ=alm(cm—c) at: 0(0,0),r); (12)

on on

where:

O ((s1,82),7) == {(x,y) : x2 + y2 =12},

T, - temperature of the soil, °C,

Ug — water content of the soil kgkgdj; soil®

L — latent heat of evaporation of water, Jkg~!,

S(ug) — water consumption of by plants per unit. In our case, S(ug) =0,
n —normal to the pipe surface, m,

X1, X2, 11, M2, 81,82 — technical date of the repeatable element of the soil heating
system (see Fig. 1), m,
a — coefficient of heat diffusion, m2s~!,



The Numerical Solution for the Problem of Heat and Mass Flow ... 81

A — thermal conductivity of the soil, Wm—1K-1,

K — specific heat of the soil, Jkg~K~1,

D — coefficient of moisture diffusion of the soil water, m?s~,

K — conductivity of the soil water, ms™,

o, o1 — heat transfer coefficient in natural and forced convection, Wm—2K—1,

Om, @1  — mass transfer coefficient in natural and forced convection, ms™!,

Cm,C1mn  — Water vapour content in the soil and air directly contacting soil
particles, kgm™3,

c,c1 — water vapour content in heating air (c) and ambient air (c;), kgm>.

The quantities ¢y, c1m, depending on soil water potential, were calculated from
the Kelvin’s relation (Hanks and Ashcroft, 1980).

The water vapour content in heated air (c, ;) was calculated from a standard
psychrometric relation. The coefficients of heat transfer by natural and forced
convection were computed for a mean temperature (arithmetic mean of soil and
flowing air). More details referring to assumed simplifying presumptions — among
other things — are contained in the work by Kurpaska and Slipek (1996). A diagram
of complementary interdependencies among the presented systems is shown on
Fig. 2.

The model ensued involves physical parameters of heated and ambient air,
technical data of the installation, as well as thermophysical and water proper-
ties of horticultural beds, thus, it can be employed to study the heat and mass
transfer in horticultural beds by use of computer simulation. However, the sug-
gested mathematical model of a soil heating system displays a strong conjugation
between the equations of heat and mass diffusion. Moreover, soil material features
and coefficients of convective heat and mass transfer depend on soil humidity. As
a consequence, the analyzed system becomes a non-linear system. Also, nonlinear-
ity of the investigated issue derives from the fact that thermo and hydrophysical
characteristics are a function of soil bed humidity changing within the process pro-
ceeding. The conclusion is that an efficient numerical algorithm should be formed
for the purpose to pinpoint the values of temperature and water content in soil.
This is precisely the main objective of the study. '

2. Presentation of the Differential Problem

Let us express the system of the equations (4, 6 + 12) in a compact form in order
to facilitate investigation of the developed numerical method.

Let R D H :=[0,a1] x [0, az)\ F ((s1,52),r), where a; > 0, 5;(G =1,2), r >
0 given real numbers, while F ((s1,52),7) := {(x1,%2) :x? +x} <r?} C[0,a1] x
[0,a2]. Let T > 0 be a given number.
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Fig. 2. Diagram of complementary interdependencies among presented systems Fig. 1

We consider a system of differential equations:

E)ﬂ(v: x)=fi (uz(r x)— (r x), (Aug)(t, x)) (re(,T),x € H),

(13)
d
ZL(0,%) = fo a5, %), (Bud (£, 1) (x € O, T],x € ),
with initial conditions:
u1(0,x) =ujplx) (=12, x e H), (14)
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and boundary conditions in a form:

ouy
E(T. x)=0

(i=1,2, t€(0,1], x € {0} x [0,a2) U [0, a;] x {O}U{al} x [0,a3]), as)

uq
—(r x) =g1(ui(r,x), ux(r,x))

(r €(0,1], x €[0,a1] x {a2} U O ((s1,52),7)),

where x = (x1, x2), (Aup)(t,x) = —}(1’ x) + % (i =1,2).1Itis essential to note,
2

that on the boundary of the rcctangle [0, a1] x [0, 1] the normal outward deriv-
ative of the boundary of the domain is equal to the partial derivative of the
corresponding variable.

Digitizing and difference method.

Let N; € N (i =1, 2) be given natural numbers. We define k; := a; N;! (i =
1,2)
A set of points

= (A1 N A2) U (A1 U A2) N O ((51,52),7)), (16)
where
ayi={0,(j - §)k G =1,.... N, @] xR, -
Ay =R x {0, (j " %)kz (= 1,...,N),a2]
we call a difference net.
e
®
S
h,
_hy
2
h,| h, h
3 7

Fig. 3. Difference net
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Let assume, that the points of the net S we will denote x™, where M will be
considered an index. Therefore we can write:

S=kM:MeM}, (18)

where M is a appropriate set of indices. We divide the nodes of the net S into
interior and border nodes (Fig. 1):

§0.= [xM:xMeHO],BS = {xM:xM e 3 H}. (19)

This sets correspond to appropriate sets of indices, which we denote, respectively,
M and M. Let see, that directly from the definition a relationships

M=MUM, MONaM =¢ (20)

arises.

If M € M, then nodes x™ correspond exactly with four neighbouring node
points, which we denote: x ~1(M) x1(M) x-2(M) »2(M) and the distance between
them and x¥ is equal to h_y, hy, h_3, hy - Fig. 4.

2(M)

p X
h,
x-1(u) XM x‘I(MJ
L . m @
h,
& y2M

Fig. 4. Neighbourhood of nodal point x¥

If xM is not a border node, then it is a neighbour of one, two or three nodes,
while the neighbouring nodes can be either interior nodes or border nodes.

Let denote 7 := pk (u € N), where k is a fixed positive number. We will
further on call it a time level u, or a u-th time level.

Our goal is to determine the value of ¥; (i = 1, 2) in the nodal points, i.e. the
values u; (t#,xM) (i =1,2, u € N, M = M). For the sake of the simplicity of next
notations we introduce the denotation:

u;’t'M =U; (T#,XM) (l = 1, 2- e N’M € M)' (21)

At the beginning let define difference operators, which will be used for the
approximation of the partial derivatives of the first and second order, occurring



The Numerical Solution for the Problem of Heat and Mass Flow ... 85

in equation (13) and in boundary conditions (15).
For u e N, M e MY, (i, j =1, 2) we determine:

3
a—u’(r“ xMy ~ k! (u;*“"" —uM ) =t 2, (22)

a i .
ﬁ('t'u,xM) ~ (hj +h_j)—1 (u;“" (M) —u

m—j (MY _.  u.Mj
% )_.u , (23)

-1 By _,I(M) .L.L M w.M _ ,U-.—}(M)
Au(r“x )Nihj ( )+h ( Y )=
' 0.5(hj +h_j)
j=1
= MO, (24)

Let notice, that on a basis of initial conditions (14) we have:
uM =My (i=1,2,MeM). (25)

Further on the problem is, that knowmg the values of the functions u; (i =1, 2)
in the points (4, xM™) (M € M), i.e. on the u-th time level, find the values of this
functions in the points (!, xM) (M € M), 1e on the (1 + 1)-th time level.

Let assume than, that the values of u (z =1,2, M eM) are known. In
nodes x™ e S® we approximate the dlﬁcrentlal equations (6) using difference equa-

tions:
+,u M = ,u M +1u, M _ uMae
+.u M =f u M e M$)
These equations can be written in an equivalent form:
.u+1 M ,u M _ +uM  u Mo
U =u M. kfi (uy™, uy™ ", uf ) 4 @)
LM M
ug"' = uj" =" kfy (ub™, uf,f‘ 6B)

Let notice, that YM € M? known are all the values on the right hand side of the
second of specified equations. It permits us to calculate all the values of u*‘“ M
(M € MP). Then, however YM € M, known are all the values on the right hand
side of the first of the specified equations, what allows us to calculate the values
of uf™M (M e MO,

On the ‘left hand’ boundary of the set H (Fig. 5), i.e. in the nodes x™
{0} x (0, a2) we approximate the boundary conditions (14) employing equations :

. (u#u,um r u,f‘“'M) =0 (=12, (28)
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Fig. 5. The surrounding of the node on the left hand limit of the set H

which induce the equalities:

M = D G = 1,2, xM € (0} x (0, a2)). (29)

In the same way we obtain the following equalities:
uf TM o L= 5 1, 2, 2™ e far) % (0a20), (30)
uly+l.M — ulg+1.2(M) (=12 xM € [0,a1] x {0]). (31)

X
h.,

-2
X8

Fig. 6. The surrounding of the node on the upper limit of the set H

On the ‘upper’ side of the rectangle H (Fig. 6), i.e. in the nodes x™ € [0, a;] x
{a2} we approximate the boundary conditions (15) using equations:

~h7} (uip+1.M _ u;z+1.—2(M)) = (u;im.m, u§+l,M) i=12). 32)

The unknown values, which shall be determined are u**""™ (i = 1, 2). Therefore
in each of the nodes x¥ € [0, @1] x {a2} it is necessary to solve a system of two
non-linear equations with two unknowns.
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The values uf‘“‘M in the nodal points x™ € O ((s1,s;),r) still need to be
determined.

At the beginning we shall notice, that if x™ € (xM,xM) € O ((s1,52),r), then
ny normal versor outward to the boundary exposed at the point x is equal to

ny = (nl,M,nz'M) = (33)
51 —x]M 52 —xM
Vit =2 + (52 =x)? (51 —xM) + (52— xff)’

Let define a node x* placed on the circle O ((s1,s32),r). With this node is
matched one node x ™, which we call a neighbour of the node x¥ and three nodes
adjacent to the node x™ different from the node x? (Fig. 7), which we denote
xMi xM2 xMs. Among the nodes x M1, x M2, x M3 we choose that one (denoted xM+),
which meets the condition:

&
x
&

. g
®

.xM3=va

Fig. 7. surrounding of the node placed on the edge of the heating pipe

—_— e
cos (xPx™, —n)| = max |cos(xPxM, —n]|. (34)
’ i=1,2,3
Planes described by the equation
. |
p+1,P g0 —xf x e —xf
zi(x1,x2) = u; Y M p M _p| X
P M _. P
Xy —X] Xy ¢ =% \
My __pP. _ P
X #1 *17H u+1,Mo u+1,P i
+ | M 5 p |\ - M i=12)
X, —Xx3 X2 —X;
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crosses the points (xP u“"‘1 P ) ( xMo, u,’.‘“'M“), (x‘"', u;.“"'l'M').
Using the derivative ! (z**!,x”) we approximate the derivatives 3 (x”)
=12 ie:

ou; 0z; 9z; 9z; e
an (37) 2 g 6N =g () 4mps 67) =12) @)

Values of the derivatives g{i;(xp ), a%(x’" ) (i =1,2) are given by the relation-
ships:

Bz,

()=

(
-

(xf,_”‘ —x{) (u;z.+1,Mu - u;z+1.P) (x;”" x{) (u,f““'M' . “?H'P)) :

(xf"' —xf) (xé" —x{) (xf" —x{') (xf’ —xlp)) = (37
+1,P

1 (u," )

0z;

—@P) = ((xf’“ —xlp) (u,‘-‘“'M‘ - uf”'l'P)) - (xf" xf’) (u‘"'+1 iy u‘”"l'P)) :

() ) o)) = o

In the node x” boundary conditions (14) induce therefore the equations

mpm(“4)+mpm(‘”ﬂ &Qq“ﬂﬁﬂf)a=Lm (39)

This is a system of two strongly non-linear algebraic equations with the un-
known
utr i =1,2).

By that the process of construction the uf‘“*‘l'M (i =1,2, M € M values has been
completed.

The presented difference scheme is an explicite scheme in all interior nodes
and implicite in all boundary nodes. The difference scheme must be compatible,
convergent and stable, to be useful for calculations - meaning that the values
generated by it approach at the limit the solution of differential equations ap-
proximated by that scheme (Keller 1971). We employ here only some mental
short cuts. The compatibility of the scheme means, that it approximates the given
differential problem. In case of the scheme presented here this property is quite
easy to prove, assuming the regularity of the functions f;, g; (( =1, 2) and com-
patibility of the boundary conditions and initial conditions at the time = 0. The
stability of the difference scheme, because of the non-linearity of the differential
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problem, is here considered to be a continuous relationship between the solution
of differential problem and the right hand sides of the equations as well as the
initial and boundary conditions. This is also relatively easy to prove. Unfortunately
— for nonlinear problems the compatibility and stability of the difference scheme
do not guarantee its convergence. The formal proof of the convergence of the
presented scheme has not been made yet, although all the premises suggest that
the scheme is convergent, provided that the ratio of the time step k to the shortest
spatial step is sufficiently small (<< 1).

While conducting the calculations, one shall take care not to allow too large
disproportion of the spatial steps. The inconvenient situation can crop up prac-
tically only in the neighbourhood of nodes located on the circle O ((s1,s52)r). In
such situation it shall be enough to change slightly the position of the circle or to
change the length of the spatial step.

3. Numerical Example

Simulation studies on the distribution of temperature and water content in soil
beds were performed for:

— technical data of the installation: d = 0.05 [m], 4 = 0.3 [m]

- physical parameters of heated and ambient air:
T =32[°C], T; = 13 [°C),
¢ = 0.0135 [kgm™3], ¢; = 0.0079 [kgm3],

Thermo, hydrophysical characteristics and soil water potential of the presented
substrate were determined in a laboratory (Kurpaska et al., 1996; Kurpaska, 1993).
The obtained experimental data pertaining to the thermal and hydro-physical fea-
tures were fitted with approximation curves of obtained values. The course of such
changes is defined by following relations:

a =095 + 9.8ug 18.4u2 + 5.7u3

A =0.033 + 0.28u, + 5.5u§9.2ug

Kkw = 620.1 + 4001.7u,

K = exp(—27.17 + 90.7ug)

D = exp(—22.38 + 27.6u,)

Isotherms of temperature and water content are shown on Fig. 8; they were ob-
tained from the numerical solution upon expiration of periods of 32.4; 108.6 and
156 h (i.e. upon reaching the quasi-stationary state).

Tests verifying changes of temperature and water content in analyzed soil beds
were executed in a soil canal of 5 m length, 1.2 m width, and 0.6 m height. The
results of tests verifying the bed humidity and bed temperature measurements,
made in spots located in the soil canal, are presented on Fig. 9. These results
were compared with quantities computed as a solution for spots exhibiting the



B. Bozek, S. Kurpaska
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Fig. 8. The thermic isolines and isolines of water content after: 32.4 h (a), 108.4 h (b)
and 156.4 h (c)

same space coordinates. Deviations among the design and real (computed) values
of temperature and water content were described by the relation formulated as:

" & % 2 0-5
_— Z (Ecalc., i(t) — Epmeqs., (1))
n

) (40)
i=1

where: Ecg..,i(t) — and E,eps., i(7) — values of temperature and water content
obtained from the numerical model (E.,. ) and from measurements (Ep,.qs.) after
the same time (7), and » is the number of comparison.

It is apparent that the mean square error (o) for temperature and water con-
tent is 0.85°C and 0.02 kg/kg, respectively. A relatively bigger difference between
the measured and computed quantities of water content in soil beds should be
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Fig. 9. Comparison of calculated values from the model with measuerd values for (a)
temperature and (b) water content of the soil

referred to the fact that a mass stream has not been included in the thermodif-
fusive model. In a general case, heat transfer through soil pores and capillaries in
a bed being dried occurs by convection, and the mass stream - by convection in
a liquid and vapour phases. A theory interpreting this process, the evaporation-
condensation hypothesis (Przesmycki, Strumitto, 1983), assumes that in a period
with a constant drying speed, the simultaneous heat and mass transfer in the
boundary layer (mainly in a liquid phase) plays the dominant role, whereas the
transfer (convection) conditions inside the soil bed (in a gaseous phase) are de-
cisive while the drying speed is decreasing.

4. The Physical Parameters of Air Heated Soil, Obtained from the
Proposed and the Thermal-diffusion Model of Heat and Mass
Exchange

In order to check to what extent the proposed model (drying model) reflects
correctly the processes occurring in the course of heating soil with warm air, com-
parative analysis was effected of temperature changes and soil water content levels
obtained from the solution of Philip and de Vries model. The selection of this
model was motivated by the fact of significant divergence of results obtained from
the solution of such model - and the empirical measurements (see e.g. Ahmed et
al. 1983; Puri 1987). The heat movement in Philip and de Vries model is defined
by the following formula:

L 3T 32T) L
ot
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and mass flow in form:

a0

o = V(D7VT) + V(Dy V) + %"y‘[i (42)
The comparative analysis of temperature and soil moisture levels was effected
for sand. The thermal and hydro-physical properties (D — isothermal moisture
diffusivity as vapour and liquid or only as vapour - D,,; Dr — thermal mois-
ture diffusivity as vapour and liquid; C — volumetric thermal capacity and earlier
mentioned a and K) were taken from Jurry and Miller study (1973).

The above discussed model (equations 4 and 6) was used in order to show the
changes of temperature and soil moisture. These equations (equations 6 and 4,
as well as 41 and 42) were supplemented with initial-boundary conditions (third
type boundary conditions), identical to equations applied in the simplified model
(equations 7-12).

The difference between both applied models lies exclusively in the values of
heat and mass penetration coefficients, since — in the simplified model - effective
coefficients were used reflecting the interfering elementary flows of heat and mass.
These coefficients were obtained from correlation equations applied in dehydra-
tion theory involving the simultaneous flow of heat and mass. The comparison
of both models (equations 6 and 4 , 41 and 42) leads to the conclusion that the
difference between them lies also in their internal structure, since the equation
defining the mass flow (Eq. 4) neglects the thermal diffusion of soil water (the
thermal diffusion effect ) and the gravitation element; since the soil moisture (6)
was used instead of weight moisture (ug), the thermal capacity of sand (C) was
used instead of the specific heat (k).

The differential method was used also to solve the Philip and de Vries model
with the attached border terms; the algorithm of applied method is discussed
in detail in Chapter 2. Figures 10a and 10b show the results of simulation ana-
lysis of temperature changes (Fig. 10a) and water content changes (Fig. 10b) in
sand. The iso-lines show the changes of physical parameters of sand for pseudo-
stable condition of heat exchange. The calculations were made for the following
model parameters: simulation time (z); v = 120 hours; the intensity of the flow
of the warm air (Q); Q = 20 x 1073 m~3s~1, temperature of the heated air (T);
T = 35°C; ambient temperature (77); T3 = 13°C; initial temperature of the sand
(Tzo); Tzo = 14.3°C; initial soil moisture (6p); 6 = 0.34 cm—>cm~3; humidity of
ambient air — 70% and heated air 40%. The other values of technical paramet-
ers were adopted at the level of garden substrate. The analysis of temperature
and water content iso-lines shows that while the temperature values in studied
soil space have similar shape, the water content change analysis in the case of
Philip and de Vries model indicates a more homogeneous field of such values.
Undoubtedly, it is the consequence of the inclusion of thermal diffusion effect
in the description of soil water flows. In order to assess the diversity of obtained
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Fig. 10. The thermic isolines (a) and isolines of soil moisture (b) in the sand after 120 h
calculated from Philip-de Vries and drying models
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temperature and moisture content results (in pseudo-stable condition of heat ex-
change) schematic points were identified , the co-ordinates of which are shown in
Fig. 1. The mean square error term (o) between the analysed values in identified
points (obtained from both models) is not higher than 0.53 K and 0.006 cm3cm—3
— in the case of temperature changes. This fact corroborates the correctness of
the adopted simplified conditions in the presented model (equations 4 and 6 +
12). The simplifications introduced in the model (e.g. the neglected flow of soil
water in gravitation element, the neglected thermal diffusion element (equation
4) proved to be insignificant. Doubtless, it was the consequence of e.g. applying
the most correct (physically) third type border terms, the insignificant temperat-
ure differentials between the heated air and the surrounding soil space, as well
as the adoption of the situation when the heated air flowing though the porous
space absorbs any amount of steam released in the course of air flow through the
capillary-porous substance. The possibility of neglecting the thermal diffusion in
describing the flow of soil moisture is corroborated by results obtained by Zaradny
and Sutor (1974); these authors found that the thermal diffusion on the average
has twice smaller values than the isothermal diffusion.

5. Conclusions

A numerical algorithm solving the issue of heat and mass transport in a soil
heated by warm air with no additional humidification is presented in this pa-
per it. To describe mass transport, a soil water diffusivity was employed which
has an analogy to the heat diffusion coefficient. The convective heat and warm
transport coefficients (for both the natural and forced convection) were determ-
ined from correlation equations that are widely used in chemical engineering. It
was certified that there was an essential correspondence between the numerical
solution and empirical measurements; deviations between the measured and cal-
culated quantities were 0.85°C and 0.02 kg/kg, respectively for temperature and
water content. The changes of input parameters of a model are feasible in the
developed algorithm and thus, the simulation experiments can be carried out. This
algorithm appeared to be a constructive investigative tool allowing to better study
the analyzed phenomena of heat and mass flow in a capillary-colloidal and porous
medium.
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