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Abstract

An improvement of the methodology used in the evaluation of numerical errors
occurring in solution of the 2-D advection equation is proposed in the paper. For this
reason numerical diffusion and dispersion tensors are introduced. Using an example
of the upwind scheme the methodolopy for derivation of numerical diffusion and
dispersion lensors is presented and analysis abilities that they provide are discussed.
Numerical and physical diffusion coeflicients are compared for a chosen example.

1. Introduction

The 2-D advcction-difTusion equation is commonly used for solving various prob-
lems concerning such physical phenomena as: mass, energy and momentum trans-
port. Since in most cascs an analytical solution is not possible, numerical methods
arc applicd. Unfortunatcly, these methods arc responsible for serious numerical
problems which result both from numerical methods limitations and requireinents,
as well as from the solc nature of the advection-diffusion cquation. As we know,
approximation of the advective term existing in this cquation is the reason for
most numerical problems. Discretization of the equation introduces numerical
diffusion and dispersion to the solution. Due to numerical diffusion an inaccurate
solutions is obtained. On the other hand numerical dispersion is responsible for
oscillations in the solution. Such errors are the result of truncation of second and
third order terms of Taylor series expansion, which is used in dctermination of
finite differences, approximating derivatives occurring in the advection-diffusion
cquation. Thesc terms decide as to the accuracy of a solution. In this situation it is
very important to have the ability to determine the magnitude of the errors gen-
crated. In the case of a 1-D lincar equation they have a relatively clcar and simple
form, so their interpretation is not troublesome. Unfortunately in the 2-D case
the form of the error resulting from the Taylor scries truncation becomes much
more complicated, since thcre appear terms including derivatives in the second
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direction as well as mixed derivatives. Analysis of the errors may be simplified
by the introduction of so-called numerical diffusion and dispersion tensors. The
proposal to introduce tensors seems to be attractive. As the review of literature
shows, this kind of approach has not been presented up till now. For instance
Fletcher (Fletcher 1991) determines artificial diffusivity for a 2-dimensional case,
but only for normal and longitudinal directions to the flow, since from the phys-
ical point of view their meaning is most significant. Apart from this the analysis
is performed for an advection-diffusion equation steady in time and restricted to
numerical diffusion only.

B. I. Noye and H. H. Tan (Noye and Tan 1989) have also conducted accuracy
analyses of some differential schemes used in solving 2-dimensional advection-
diffusion equations. The analyses concerned various schemes with finite differ-
ences but no generalization has been introduced to cither the methods themselves
or derived formulas describing numerical diffusion. The numerical dispersion has
not been analyzed at all.

In this paper a method for the derivation of numerical diffusion and dispersion
tensors for the solution of a 2-D lincar advection cquation is proposed and analysis
possibilitics that they provide are discussed. This can be presented on the example
of the well-known upwind scheme.

2. Formulation of the Problem

Let us assume that transport of a conservative substance dissolved in water in a
two-dimensional case, without source terms, is described by the following lincar
differential equation, depicted in the Cartesian co-ordinate system:

af af d aof )
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where:
ye=ld
UL =1u,lz="v,
u, v — velocity vector components in x and y directions
respectively,
x1=x,x2=y — space coordinates,
k! — diffusivity tensor dcfined as follows:
K K
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For Eq. (1) the initial-boundary problem is formulated where a solution (usually
numerical) represents a function f(x,y,?) for x,y € § (where S is the solution
domain) and ¢ > 0. The function f(x,y,t) has to be continuous and differenti-
able.
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When the diffusive term is neglected, Eq. (1) becomes a pure advection equa-

tion: of . of _of
— 4v—=0. 2
ot FT dx i ay @
Let us solve this equation by applying a rectangular grid of dimensions Ax - Ay

(Fig. 1) and assuming for simplification v, v =const.

Ay

Ay

> 2
Fbx Ag__'

Fig. 1. Differential grid for an upwind scheme

Approximation of derivatives in node “0” at time level ¢ 4+ 8 At with usc of the
upwind scheme, results in the following differential equation:

k 1 k 1 _ k1 k+1 k+1
2t ( Ml N )+
Ax Ay

At

- ff, -1 ”
—(1-8) (u =~ + v Ay ):0,
wherc:
k - index of time level,
At — time step,
f# - weighting parametcr from the range < 0,1 >.
The value of the function f at time level k+ 1 in question equals:
k1 - KHL _ pletl k1 _ g4l
e (o) (R
-1=0)[G (= 1)+ G (f5 = 1))
where:
Ce =uAt/Ax, C, =vAt/Ay (5)

arc the advective Courant numbers in x and y directions respectively. Properties
of this scheme depend on the parameter @, which can be proved by stability and
accuracy analysis.
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The numerical stability analysis has been performed applying the Neumann
method (Fletcher 1991). It has been proved that the stability condition is satisfied
when (Bielecka-Kieloch 1998):

(G+CG)1-20)—-1<0 (6)
It should be noticed that for
0>1/2 @)

the foregoing relation is always true for all Courant numbers C, and C,, and the
scheme is absolutely stable. However, for 6 < 1/2 the scheme is stable if

1
G+G < ——mmr0. 8
If @ = 0 is assumed, the stability condition for the classical explicit upwind scheme

is obtained.

3. Accuracy Analysis

In the Eq. (3) the nodal values arc replaced by their estimates resulting from
Taylor-series expansion of the function f in node 0 at time level ¢ +6At. In
the serics terms with up to third-order derivatives are included. As a result of
transformation the following cxpression is obtained (Biclecka-Kicloch, 1998):
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Applying the following relations resulting from (2):

af af 3f
B § 10
at qu By (10)
Bf _ 29 | 29, 8
az ¥zt dy? + Vaxay’ (1)
af 333f 333f 2. of 2 8f
- 3 — B
ErE a3 Uy 4 Vaxzay Y Bxay? (12)

it is possible to transform Eq. (9) in such way that on its left side the advection
cquation is obtained and on its right side, additional terms resulting from the
applied approximation, appear. This equation then takes the following form:

%w%w%:[(e-%) At +%] %i—{Jr
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+uAx? [(1 60 + 692) ({’: —Ag-] %%+ (13)
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Ay*(1 — 66 + 60%) XL ——.
2 Gatey LAY -0 )

+vAx2(1 - 60 + 692)

The second order terms on the right side are responsible for numerical diffusion
and the third order terms - for numerical dispersion. If they arc expressed in
the form of a tensor then an cquation analogical to Eq. (1) is obtained, with
the difference that the right side describes not physical, but numerical effects.
According to this analogy Eq. (13) can be written as follows (Biclecka-Kieloch,

1998): o, o a_(Dng)_ﬁ_(Tnﬂ)Jr..., (14)

at ax;  ax; ax; ax; dx?

1 ulAx 1
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D" = (15a)
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where:
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This is advection Eq. (2) modified due to approximation procedure. Tensor D"
describes numerical diffusion, and T® — numerical dispersion. Their form depends
on the accuracy of the applied approximation. If the approximation, carricd out
in respect of space and time, was of the second-order, then in (14) the term
responsible for numerical diffusion would not appear. In case of the third-order
approximation the term responsible for numerical dispersion would not appear
cither. The analysis of additional terms occurring in the modificd cquation affords
information on the method’s properties.

The modified advection cquation (14) is similar to the advection-diffusion
cquation (1). In both a diffusive term exists. In the case of cquation (2) this term
describes the process of physical transport defined by the physical diffusion tensor
K¢. However, in Eq. (14) the diffusive tcrm represents a numerical crror cffect
resulting from the approximation of a differential equation. In analogy to Eq. (1)
the tensor D® occurring in this term is called the numerical diffusivity tensor.

It is possible to determinc further properties of the applied approximation
cxecuting a transformation of the co-ordinate system x —y rotating it by an
angle ¢, such that the axis / is parallel and axis n normal to the velocity vector
w = ui + vj. This vector characterizes flow on the x —y plain.

During rotation of the systcm any tensor R is transformed into the new system
according to the rule (Sawicki 1994):

R=QRQT, (16)
where:
R — tensor in ! —n system,
R - tensor in x —y system,
T — transposition symbol,
Q= } o8 0 R transformation matrix.
—sin¢g cos¢

After multiplication (16) onc obtains the tensor R of the following elements:

Ry1 = Ryjcos® ¢ + Razsin ¢ + Ryzsin 2¢ (17a)
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Ry = Ry sin® ¢ + Razcos? ¢ — Ryzsin 2¢

oy SRE 1 _
Riz =Ry = —E(Ru — Rp)sin2¢ + Ryzcos 2¢.

35

(17b)

(17¢c)

If Ax = Ay = A is assumed, according to the foregoing equations, the numerical
diffusivity tensor D" (15a), will have the following elements in the ! — n co-ordinate

system (Bielecka-Kieloch 1998):

D-'lll = [(9 - %) Atu® + %:I cos® ¢+

|
+ [(O - %) Atv? + %] sin® ¢+(6 - —2-) Atuvsin2¢ =

@-%)A{wum¢+mmmﬂ+§maﬁ¢+vwﬁw=

= (0 — %) Atw? + %w(cos3 o+ sin® ?),

ﬁ;z = [(9 - %) Atu® + l—%‘i} sin? ¢+

1 5  VAy 2 1 ; B
+|:(9—2) Atve + 5 }cos ¢-—(9—2 Atuvsin 2¢ =

(0 - 1) At [(u sin ¢ — vcos qb)z} + -A—(u sinng + v cos? ¢) =
2 2
= %w sin 2¢ (sin ¢ 4 cos ¢),
5’112=D-’:.:1=
IR S (AR AYWRIET 3 B /PSS A GVE IOV |
_._E{l:(o—i)mu-f- 2} [(9 2)Atu+ 3 :|}sm2¢+
—|—( —%) Aluvcos2¢p =
o e 1 2_ 2 Eﬂ&i._lﬂél) ; ]
_—5[(9 Z)At(u v)sm2¢+( > 3 sin 2¢ |+

+ (9 - %) Atuv(cos? ¢ — sin? ¢) = %w sin 2¢ (sin ¢ — cos ¢),

(18a)

(18b)

(18¢c)




36 M. Bielecka-Kieloch

where w = |w| is a modulus of the velocity vector.

The above relations prove that the upwind scheme generates the maximum
numerical diffusion, when flow is directed at an angle of 45° to an axis of the
x —y system, i.e. when u = v. For ¢ = n/4 the tensor takes the following form:

0—1)Atwi+Lw 0

A
0 mw

As can be noticed, the scheme always generates some numerical diffusion in
the direction normal to the velocity vector sincc D, # 0. However, the numerical
diffusion in the flow direction depends on the value of the weighting parameter
6. Let us consider possible cases.

For 6 > 1/2 diffusion in the longitudinal direction is always greater than that in
the normal direction since 5’1’1 > D,. As a result, the initial symmetrical concen-
tration distribution is deformed during its propagation. Aftcr a whilc the isolines
of the distribution form cllipses of the longer axis directed longwise with the flow.

6 = 1/2 means that for intcgration in time the second-order accuracy scheme
with centered difference is adopted. The numerical diffusion in both directions
is identical. Now, it is the result of the spatial derivatives approximation with
first-order accuracy. The initial symmetrical concentration distribution becones
deformed after a while, however, it is still symmetrical with respect to both axes.

However, 0 < 1/2 influences the diffusion in the longitudinal dircction, so that
it is smaller than that in the normal dircction, as now D}; < Dj,. In the extremc
casc of 0 = 0, when

G B oy 20)

V2A

where ( is the Courant number in the flow direction,
the longitudinal diffusion does not occur. There is only the normal diffusion left.
In the case of a flow parallel to one of the axes of the co-ordinate system, for
6 = 0 and the Courant number cqual to one, an accurate solution is obtained.
The numerical diffusion and dispersion tensors (15a, b) have zero elements. The
numerical solution is in agreement with the analytical one, since the scheme is an
accuratc approximation of the advection equation.

Since in practical applications Courant numbers arc different from one, the
scheme always gencrates some numerical diffusion. The analysis of the dispersion
tensor (15b) in this case does not bring us to any interesting conclusions. In
the truncation error the terins with the second-order derivative dominate which
indicates that in the solution the dissipation error plays the decisive role. The
scheme produces smooth results, without oscillations, but strongly deformed by
the numerical diffusion.
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4. Numerical Tests

The scheme properties presented are confirmed by results of numerical tests il-
lustrated by figures 2, 3, 4 and 5. A steady flow with a homogeneous velocity
field is assumed in a reservoir of dimensions 45 m x 45 m divided into a grid of
dimensions Ax = Ay =1 m. The initial condition f(t =0,x,y) is described by
the Gaussian distribution of parameters 0 =2 m, x; = y; = 9 m and maximum
value fpax = 1. Assumption of # = 0 and C; = 1 (At = 10 s) for a one-directional
flow, when u = 0.1 m/s and v = 0, assures propagation of the initial distribution
without deformation (Fig. 2).

1 1 1 A L 1 1 1 L

y [m] 45- L

t=200s, C,=1, 0=0.0
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354 L
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-
—
o
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o
w
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o

Fig. 2. Advection of the initial distribution of concentration along x axis, computed with the
upwind scheme for =0 and C; =1

For a flow along the basin’s diagonal, when u = v = 0.1 m/s a strong numerical
diffusion always occurs. For § = 1/2 and C; = C, = 1/2 it is the samc in both the
longitudinal and normal direction to the velocity vector (D}, = Dj,) resulting in
axially symmetrical concentration distribution for ¢ > 0 (Fig. 3). The maximum
concentration is reduced to the value fie = 0.182 after ¢ = 200 s.
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Fig. 3. Advection of the initial distribution of concentration along the diagonal, computed with
the upwind scheme for 0 = 0.5 and C; + Cy = 1.0

However, for # =1 and 0 = 0 distributions axially non-symmetrical arc ob-
tained. In the first case of D}, > Dj, the distribution is stretched in the direction
tangential to the velocity vector (Fig. 4). In the sccond case, when Ty = Dips
the distribution is stretched in the normal direction (Fig. 5). The latest result is
typical for the explicit upwind scheme.

For better illustration, Fig. 6 presents concentration distributions in cross-
sections situated on the reservoir’s diagonal, along which advection proceeds.
This allows for obscrvation of 6 parameter influcnce on deformation of the final
solution. For instance, although the obtained distributions for ¢ = 1.0 and 6 = 0.0
are stretched one in the tangential direction (Fig. 4), and the other — in normal
direction (Fig. 5), the maximum concentrations are different. For ¢ = 0.0 the
maximum value of concentration (Fig. 6, curve c) is much greater than for ¢ = 1.0
(Fig. 6, curve b). In both cascs though, they are much lower than results from the

accurate solution.
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Fig. 4. Advection of the initial distribution of concentration along the diagonal, computed with
the upwind scheme for @ = 1.0 and Cy + Cy = 1.0

5. Comparison of Physical Diffusion with Numerical Diffusion

The derived tensors give another, very uscful possibility - they enable comparison
of physical diffusion with thc numerical one. In this way it is possible to avoid
cxcessive numerical diffusion as compared with the physical one. If the following

equation
af af @ af :
—4uj———(K—|=0 j=1,2 21

T dx; ij( ij) 4 1)

is solved with a dissipative scheme, i.e. generating numecrical diffusion, a solution
is obtained which corresponds to the following equation:

of af d of )
i fly i AR+ D) = Jiil 22
at T dx;  ox; (( + )ax,- ' (22)
D" — numerical diffusion tensor,
K — physical diffusion tensor,

K+ D" substitute tensor.
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Fig. 5. Advection of the initial distribution of concentration along the diagonal, computed with
the upwind scheme for @ =0 and C, + Cy = 1.0

This means that in the solution, total influence of physical and numerical
diffusion occurs. As a result, if numerical diffusion dominates over the physical
one, an unrealistic solution is obtained. To avoid this problem it is necessary to
cstablish a proper relation between numerical and physical diffusion. This can be
achieved by a selcction of appropriate grid sizes and weighting parameters. In this
casc it is essential to compare both tensors.

Let us present a very simple cxample of comparison of a physical diffusion
tensor with the numerical one derived for the upwind scheme. In case of physical
diffusion the most basic formula describing longitudinal (K;) and normal (Kj)
diffusion in open channels is the one proposcd by Elder (Elder 1959):

K; = 5.93hv, (23)

wherc

Ve = 4/gUfc = JEun/RAm (23a)
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Fig. 6. Concentration distributions along the basin’s diagonal, computed with the upwind scheme
for Ce+Cy=1and:a) #=05,b)0=10,¢) 0 =00

— Chézy coeflicicnt (according to Manning),

Ky = aphv, = 0.23hy, (24)

where o, = 0.1 — 0.2 for regular channels.

Using the above formulae coefficients of longitudinal (X;) and normal (K)
diffusion arc calculated in the I — n system of co-ordinates. They are compared
with corresponding coefficients of numerical diffusion (Dy) and (Dy,,), determined
for the upwind scheme. It is assumed that average flow velocity is = 0.1 m/s, the
Courant number is C = 0.5 and the following two cases, with respect to depths
and grid dimensions, arc considered:

1. h = 2 m, with which a grid of dimensions Ax = Ay = 10 m corresponds and
2. h = 10 m, with which a grid of dimensions Ax = Ay = 100 m corresponds.

In addition average and extreme values of Chézy and Manning cocficients are
considered. The results obtained are presented in Table 1. It can be clearly noticed
that in most cases longitudinal numerical diffusion dominates over the physical
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as 5"” > K;. However, the normal numerical diffusion is always greater than the
physical up to IIT orders of magnitude. Only very small grid sizes enable us to
obtain comparable values of longitudinal numerical and physical diffusion.

Table 1. A comparison of physical and numerical diffusion coefficients

Depths c n K; Grid sizes 6 | Dy

245 | 0.060 | 0.759 0 | 143

h=10m | 58.7 | 0.025 | 0314 | Ax =Ay =100m | 1/2 | 5.00

10 | 0.147 | 1.856 1 | 8.57

h=2m | 18.7 | 0.060 | 0.199 0 | 014

10 (0122 | 0371 | Ax =Ay =10m | 1/2 | 0.50

h=10m | 146.8 | 0.010 | 0.125 1 | 0.86
1468 | 0.001 | 0.013

Depths e n Ky Grid sizes 6 | D,

24.5 | 0.060 | 0.026 0 | 5.00

h=10m | 58.7 | 0.025 | 0.010 | Ax =Ay =100m | 1/2 | 5.00

10 | 0.147 | 0.072 1 | 5.00

h=2m | 18.7 | 0.060 | 0.0067 0 | 050

10 | 0.112| 0014 | Ax=Ay=10m | 1/2 | 0.50

h=10m | 146.8 | 0.010 | 0.0042 1 | 050
1468 | 0.001 | 0.0004

6. Conclusions

The introduced tensors of numerical diffusion and dispersion cnable clear present-
ation of modified by a numerical scheme 2-D advection-diffusion equation. Their
analysis simplifics interpretation of numerical schemes uscd for solution and gives
information on dissipation and dispersion crrors generated by the schemes. The
numerical diffusion and dispersion tensors enablc easy estimation of the role of
weighting parameters and their influcnce on the schemes propetties, and in con-
sequence — to predict a qualitative form of solution of the advection-diffusion
cquation.

Knowledge of the numerical diffusion tensor has two practical aspects. First
it cnables climination of numerical diffusion influence by introducing a substitute
tensor. Secondly, by separating the numerical diffusion effect from the solution, it
cnables accurate estimation of the physical diffusion tensor’s components during
validation of a model.

Knowledge of the numerical diffusion tensor also cnables comparison of nu-
merical diffusion coeflicients with thc physical diffusion cocfficients and thus prac-
tical evaluation of the scheme’s applicability. In case of the upwind scheme it can
be stated that in most cases it gencrates longitudinal numerical diffusion which
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is greater than the physical one. Normal numerical diffusion, however, is always
greater than the physical one by one to three orders of magnitude. Only applic-
ation of a very fine grid affords comparable values of numerical and physical
diffusion coefficients. This scheme produces accurate results only in the case of
one-dimensional flow when the Courant number is equal to one.

The fact that maximum numerical diffusion is generated when the flow is
directed at an angle of 45° to the axis of a co-ordinate system, affords a practical
conclusion: in order to keep the numerical diffusion lowest it is necessary to
choose such a system of co-ordinates that the flow is parallel to one of the axes
of the system.

In the next paper, modifications of some numerical methods, resulting from
the form of numerical diffusion and dispersion tensors, will be discussed.
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