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Abstract

A simple turbulence model is applied to close the Reynolds equations for three-
dimensional turbulent flow in a rectangular channel. The model is based on the
generalisation of Prandtl’s mixing length hypothesis which introduces a mixing length
tensor. Components of the mixing length tensor are related to the sizes of the largest
turbulent eddies. Patankar & Spalding’s procedure (1972) is applied to solve the
boundary problem for the Reynolds equations numerically. The numerical scheme
has overall second order accuracy. It also avoids oscillations in numerical solutions
because of holding the maximum principle. The calculated velocity field is compared
with data of measurements.

1. Introduction

Numerical modelling of turbulent flows has a long history. In practice it started
simultancously with the appearance of computers. Many turbulence models as well
as numerical procedures for fluid mechanics problems were elaborated during this
period (Rodi 1980, Fletcher 1991). The turbulence models vary significantly from
relatively simple models which do not introduce additional variables and equations
to the sophisticated ones including differential equations for each of the individual
Reynolds stresses. The latter usually incorporate various empirical constants and
functions due to the necessity to parametrize higher-order turbulent moments
(e.g- see Lauder, Reece and Rodi 1975, Naot and Rodi 1982).

Engineers dealing with everyday problems would rather have simple but re-
liable models. In two-dimensional boundary turbulent shear flows the Prandtl’s
mixing length concept (Schlichting 1955) has been applied with great success for
many years. The paper by the authors (Czernuszenko and Rylov 1997) under-
takes an attempt to generalize it for three-dimensional flows where mixing length
becomes a second rank tensor instead of an original scalar variable within two
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dimensions. The problem of turbulence closure therefore shifts to the specifica-
tion of components of this tensor. Appropriate proposals for these components
for flows in rectangular open channels are given in the work mentioned above.

The present article aims to provide a description of the numerical procedure
used to implement the model. It is based on the well-known Patankar & Spald-
ing procedure (1972) for parabolic Navier-Stokes equations which are applied to
describe three-dimensional flows with specified primary direction.

The formulation of a differential problem is given below, then details of the
numerical procedure and results of simulation for rectangular open channel are
discussed.

2. Differential Problem Formulation

Bearing in mind the three-dimensional steady flow of fluid in the channel, the
problem under consideration consists of the following equations, written with
reference to the Cartesian coordinates, x, y, z, which are supposed to be set in
streamwise, vertical and spanwise directions, respectively.
Continuity:
ou dv dw

St =0. 1
dx  dy 820 1)

Momentum:
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In these equations u, v, w stand for mean velocities directed along x, y, z axes,
p for density, p for pressure, 6 for longitudinal channel slope, g for constant of
gravity. Various indexed v denote eddy viscosity coefficients. Terms describing
turbulent diffusion in streamwise direction are omitted. These omissions ensure
that no influence from downstream can penetrate upstream.

The generalisation of Prandtl’s mixing length hypothesis for three-dimensional
anisotropic turbulent flows is applied to close the set of equations (1)-(4),
(Czernuszenko and Rylov 1997). It is based on triansition from Prandtl’s equation
in a two-dimensional case

—uv =1? d_u_ ‘E

5
| @ ©)
to its analogue in the space of three dimensions. In the three-dimensional case
turbulence may have different length scales in different directions, as it may be




Numerical Simulation of 3D-Flow in an Open Channel. .. 9

anisotropic, of course. The mixing length in (5) should therefore be replaced by a
symmetrical second order tensor (/;;) with dimension of length. The term |du/dy|
in three-dimensional space may be replaced by a norm of velocity gradient, and the
last multipler on the right hand side of (5) is substituted by the deformation rate
tensor D;; = du;/dx; + du;/dx;. So, equation (5) may be generalized for space of
three dimensions in the following way

—uul = —P&; + % (13D +1,-2ka,-) s, (6)
where (4;) = (¥, v, w), P; is the “turbulent pressure”, § is the norm of velocity
gradient, hereafter defined by S = |du/dy |+ |du/dz|.

Using (6), eddy viscosity coefficients v in (2)~(4) may be expressed via the
components of a mixing length tensor. Assuming that main axes of the mixing
length tensor coincide with coordinate axes, the values of v may be specified as

follows 1

v =v+ 3 (1,.2,. +1j2j) S, 0
where v stands for molecular viscosity. Below diagonal non-zero components of
(i) tensor are denoted by [;, l, and [,. They may be interpreted as Prandtl’s mixing
lengths inx, y, z directions respectively. For rectangular open channel (Fig. 1) they
are modelled by the following multiplicative formulae (Czernuszenko and Rylov

1997)
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Fig. 1. Experiment S1 conditions, Tominaga et al. (1989)

I, = Ay ) Lw(E), @®)
l; = A;(d;) Lw(§), (9)

A,d)= [ ’L‘:Ni (%) gqu <1 (10)
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where functions Lw(£), Ni(&) refer to the well-known formulae giving mixing
length distribution in two-dimensional case

-1
VT (-El— a0l sin(m,:)) = Lu(®), (12)
:; — 0.14 — 0.08(1 — £) — 0.06(1 — £)* = 0.14Ni (£), (13)

in which £ =d,/h, k von Karman constant, [T Coles constant. Equation (12) is
derived from the log-wake law for velocity (Nezu and Nakagawa 1993). Formula
(13) belongs to Nikuradse (Schlichting 1955).

Quantities Ay, A; have dimension of length and control the maximal size of
turbulent eddics at a vertical. Note that (10)—(11) give the vertical and lateral sizes
of the largest eddies proportional to L,, L, respectively. Parameter y controls an
interval of increasing eddy sizes from a sidewall in a spanwise direction. In order to
get an agreement with two-dimensional mixing length distribution in the channel
middle zone far away from the sidewalls we should set

I =1, (14)

The equations (1)-(4) are to be accompanied by boundary conditions. They
need to be specified along solid boundaries, the water surface and the upstream
cross-section bounding the calculation domain. Since the parabolic flows are con-
sidered, boundary conditions need not be given at the downstream end of the
calculation domain. Furthermore, it is assumed that the cross-sections of the con-
sidered channel are rectangles with constant width and depth (rigid lid approxim-
ation, Rastogi and Rodi 1978).

The conditions at the solid boundaries were specified using the wall functions
technique proposed by Launder and Spalding (1974). According to this technique,
the conditions are specified at a point near a wall which lies outside the laminar
sublayer and satisfies 30 < y.yy,/v < 100. It is assumed that the shear stress and
the velocity at this grid point satisfy the logarithmic portion of the universal law

of the wall

u_w=lln“*y‘”

Uy K Vv

+A (15)

where u, friction velocity, y,, distance from the wall, v molecular viscosity, 4 = 5.3.
Normal velocity components at the solid boundaries and free surface are set at
zero. The free surface boundary conditions were specified following the approach
of Rastogi and Rodi (1978) which considers the free surface to act as a plane of
symmetry. Therefore, the gradients of u and w in y-direction are zeros.
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The condition at the initial cross section x = 0 for the longitudinal velocity
u was taken as logarithmic distribution. Components v and w were set equal to
zero.

3. Numerical Procedure

The main idea. The crucial feature of the numerical procedure is uncoupling
of longitudinal and lateral pressure gradients, that is the symbol p used for the
pressure in the x-momentum equations (2) is different from the symbol p in the
two other momentum equation. This means that in the procedure an inconsistency
is deliberately introduced into the treatment of pressure, and the quantities j and
p are calculated differently. The pressure p can be thought of as a form of space-
averaged pressurc over a cross-section, and the gradient (9p/dx) is supposed to
be known (or calculated) before we proceed to get the lateral pressure gradients
(3p/dy) and (3p/dz).

If the pressure were known there would be little difficulty: the momentum
equations would be uncoupled and could be solved one by one in turn. As it
is not known in advance, one can guess the pressures p and p, obtain the first
approximation to the velocity field, and then make corrections to the pressure in
order to bring the velocity field into conformity with the continuity equation.

Approximation to continuity and momentum equations. It utilizes a staggered
grid where w;ji and p;jx are defined at points (x;, y;, zk), Vijk — at (x;, ¥j_1/2, Zk)
and wjjr - at (x;,yj, zk-1/2). Control Volume (CV) Method is applied to obtain
discretized equations. Integrating (1) over the volume depiced in Figure 2, one
obtains

0=f(ux+vy+wz)dg=

=Cfuds—fuds+fvds—fvds+fwds-fwd3= (16)

MNbk nfr MNdn Mup Trt nif
= @ =) Ajk+ (V41 — ) Aictyzg + (Wiept — wi) Ai-1/2j.

Hereafter indices x, y, z at velocity components designate appropriate deriv-

atives,
Aj =Xi —Xi—1, Aj = yj — yj-1, A =z — 2k,
Ajk = Aj1728k4172, Bij = Big1728j 4172, Aik = Aig1728k41)2,
Ajjk = Aiy1/28j41/28%41/2,

4 =u',u=u"! etc, not shifted indices j, k may be omitted. Thus, for example,
in Figure 2 Ajr, Ai_1/2,j, Ai-1/2, give areas of faces Iy, I, [14, respectively,
and A;_1/2,jx — a volume of the cube.
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Fig. 2. u-box

Integration of (2) over this cube gives
fuldS— [u?dS+ [vudS— [ vudS+ [ wudS— [ wudS+

Mpk "_fr Mre r”f Man nup
+'1'(ﬁx)i—1/2Ai ~1/2,jk =& SINOA;_1/2,jk+
+ [ vyuydS — f v, dS+ [ voudS — fvzuzdS (17)
) P Mn up

P is treated as a scalar in every cross section.
Convective terms are approximated as follows

f u*dS — f u?dS ~ (u — u?)Ajx, (18)
Mk Mg,
f vud S — f vud S ~ Vaver u—jil—;i‘!i.ﬁ;_l/z’k (19.1)
0, i

where vauer = (vj41 +v5)/2, for the scheme of the second order accuracy, or

- 1 Vaver @ — Uj—1)Ai—172,k, if Vaver > 0, (19.2)
Vaver (Uj+1 — I:ij)Ai—l/Q,l'c, if Vauer <0,
for the first order scheme,
f wudS — [ wud S & Wayer uﬁ};ﬂbi_llzlj (20.1)

Man nup
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where Waper = (Wit1 + wi)/2, for the scheme of the second order accuracy, or

o~ { Wayer (ﬁk = ak—l)Ai—llz,;’a if Wayer > 0, (20 2)
Waver (k1 — Uk) Ai—1/2,j, if Wayer <0,

for the first order scheme.
Viscous terms are approximated straightforwardly

[ wu,dS= f vyu,dS =~
i Tlap (21)
[(Vy);+1/2",_\,—f' — (vy)j- 1/2"L-"'-°:| Ai_1j2k,

f UzuzdS . f Vzuzds ~
I, ;¢ (22)
[(Vz)k+1/2—"'§7 — (V2 )k 1/2—1] Ai_1y2j.

As two types of the approximation for convective terms have been specified,
there should be a rule to choose one of them under each of the specific conditions.
The choice depends on the value of the Péclet number representing the ratio of
convection to diffusion contribution into the momentum equation. Péclet numbers
for this case may be defined as follows

 —— /mm ((vy)j+1/2' (Uy)j—1/2) ’ (23.1)
Aj41 A;
and
Pe, = wour / it ( (Vz)k+1/2' (vz)k—l/z) (232)
Aps1 Ak

Second order scheme in y(z)-direction is applied if

Pey, <2 (Pe; <2). (24)
Substitution of (18)-(22) into (17) results in the equation
(Aojiitjk — (Ar)jidj—1 — (Ajitdj+1 — (A3)jkiik-1 — (Aa)jidis1 = Fji,,  (25)

( i =—(D")jipx + Gj‘k) :

where the term G} incorporates g siné in equation (2). Nodes arrangement is
illustrated by Figure 3. All the coefficients A4, are positive and the equation holds
the maximum principle:
4
> A0k < (Aodje (26)
s=1

for each j, k.
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Fig. 3. Nodes pattern in (24)

The last property guarantees the errors to be bound and the solution of (25)
is kept free from any non-physical oscillations. Note that it is holding of the
condition (24) which ensures validity of (26).

Treating two other momentum equations (3), (4) in a similar way one gets
from (3), (4)

(Bo)jkdjx — (B)jdj-1 — (Bjkj+1 — (Ba)jkbi-1 — (Ba)jiVksr = Fjg,  (27)
(Co)jWjk — (C)jrtj—1 — (C2)jrj+1 — (C3)jkth—1 — (Cadjrthatr = Fji,  (28)
( 4 = —(DV)jkBjk = Bj-10) + Gjie Fjg = —(D")jxPjx = ﬁj,k_l) ;

where Pji refers to the guessed pressure distribution in the cross section.

Note however that compared to (2) their integration boxes are half-step shifted
in the y(z)-direction respectively in order to have relevant variable value in the
centre of a face normal to the x—direction.

Approximation to Boundary Conditions. Since approximation of Dirichlet-type
conditions is trivial, only Neumann-type one is discussed below. Specifically, let

us take condition 5
£ —0 at surface. (29)

ay
Approximation to boundary conditions should be chosen of the same order
as that to differential equations. Approximation to equations (1)-(4) outlined
above has actually the second order of accuracy for the flows with relatively small
secondary motion, i.e. components v, w are small compared with . In order to
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have the total second order approximation to the differential problem, let us
derive the second order approximation to the surface condition (29) which uses
the same 5-point grid pattern as regular difference equations. Applying the CV
method, choose a box which is the lower half a regular u-box as shown in Figure
4, and integrate (2) over it

Fig. 4. u-box at surface

Wi + Wit1 Uk41 + Uk—1

(it —u®) Ao + 5 5 Ai_1720+

1 _ - .
+;(px)i—1/2Ai—1/2.0.k =gsinfA;_1/20k+

oy —i N ~
+ [(vy)l/Z,k X (vy )O,k(uy)ﬂ.k] Ai_1/u+
Upy1 — U a—-tg_1] ~
+ [ (v — — (W)p—12———— | Ai_1720.
[( 2 k+1/2 Aenn (v2)i-1/2 A ] i-1/2,0

Tilded A values refer to reduced faces and volume compared to a regular u-box.
After replacing (i, )o x via the boundary condition the second order approximation
of it for functions satisfying (2), is obtained.

Numerical Algorithm. Since it is a marching procedure along x -direction, one
starts with the given velocity distribution and guessed pressure in the initial cross
section, and steps forth till the final x-value.

Each x-step consists of the following substeps. At first, the equation (17) for
x-momentum is solved, based on the guessed (3p/dx), as well as (27), (28) for
the other momentum, based on the guessed p.

The u-component values #', calculated at the next cross section from (25),
generally fail to match the initial discharge which can be defined as

QW) =) ujxAj 41k, (30)
j¥
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So the corrected streamwise velocity
W=+ (31)

which provides the true discharge should be found. Take variation of equation
(25), treating terms with A;(s = 1, ...,4) as small compared to Ay and omitting
them,

(Ao)jk (8u Yjic + (D*)jxdP, = 0. (32)
Combining (30)-(32) leads to
; ; Dx
Qirue = Q') = Q@) + 8P, Z (_A_) Bj418k+1. (33)
ok 0/ jk

The last relation allows to find correction to longitudinal pressure gradient 87, .
Then, making use of (31) and (32), the improved velocity &' may be obtained.
Values of &, 7, ' do not satisfy discrete continuity equation (16) so far. The
tilded velocity components need to be corrected
=T +60, w =W+, (34)

In order to do it variate the discretized v- and w-equation (27), (28). Assuming

B =T 2tp, (35)
similar to (32) onc obtains
(Bo)jkdvjy + (D")jic(8p; — 8pj-1) =0, (36)
(Cojrdwiy + (D™)jx(8pi — 8pi-1) = (37)

Substitution of 8v! ik sw! ik from (36), (37) into discretized continuity equation
(16) gives an cquatlon for corrcctmns to cross-sectional pressure &

(S0)jkdpjk — (S1)jkdpj-1 — (Sz)jk3pj+1 — (53)jk8pr-1 — (S4)jkdPr+1 =
= —Err! ,c(u , W )

where Erri(ui, v, #') means residual after substitution u, 7, &’ into (16). The
last equation also holds maximum principle.

When 8p values are found, the formulae (34)-(37) allow to make corrections
to the secondary velocities v, w in order to ensure validity of (16) at each inner
computational point, and improve p for the next step.

In addition note that despite the fact that the described model has a HY-
BRYD approximation pattern of convective terms it is actually of the second
order of accuracy and thus as accurate as the QUICK scheme f.e. (Leschziner
1980) since secondary velocities appear to be small and it turns on the second
order approximation for convective terms.
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4. Results and Analysis

The numerical model described was applied to simulate three-dimensional tur-
bulent flow in a rectangular open channel. This choice was supported by the
possibility of using experimental velocity distribution measured by Tominaga et
al. (1989) in the cross section of the channel. The measurements were carried out
in a tilted rectangular open channel at a fully developed flow. Specifications of
the case are given in the table below.

Table 1. Experiment S1 conditions, Tominaga et al. (1989)

h B Umean Umax 0

cm | cm | ems~T | cm 571 rad

5 |40 | 400 463 | 094 x10~°

To solve the problem for these data, the components of the mixing length
tensor should be specified. Knowledge of the macro structure of turbulent eddies
helps to do that. In the channel middle zone (far away from the vertical side walls)
the largest vertical size of macro eddies should be equal to the water depth, i.c.
L, = h. The spanwise size L, of the largest eddies depends of the bed friction
effect which increases with increasing k;/h and B/h. If bed friction is sufficiently
strong, the lateral size of the largest eddies is much smaller than the channel width
(Yalin 1992). Parameter L, is assumed to be equal to the water depth resulting
in L, = L,. Another assumption is related to the size of the edge zone. Because
this size is not known a priori, various values of y have been considered.

Perhaps the most important feature of the measured velocity contours for rel-
atively narrow channels is that the maximal velocity appears not at the surface but
rather below it. This occurs due to secondary currents which are directed towards
the centre of a channel in the subsurface layer and therefore bring fluid with rel-
atively low momentum from a sidewall to the channel centre. This effect cannot
be reproduced by the model since it does not provide explicit proper modelling
of the normal Reynolds-stress components. But it is known that anisotropy in v
and w'? given rise to secondary motion in channel flows. Typical computed isovels
are shown in Figure 5.

Figure 6 depicts distribution in a lateral direction computed against measured
maximum velocity. Note however, that computed velocity has its maximum at each
vertical just at the free surface whereas in experiments the maximum is below it
in the marginal zones. Coefficient y controls the growth rate of the mixing length
components from zero at the vertical wall to their maximal values far away from it.
The growth is slower for the higher values of y, i.e. at some distance from the wall
for greater y we have a smaller mixing length, smaller eddy viscosity and greater
velocity. Comparison between measured and computed velocity distribution give
rise to the conclusion that the best results are achieved for y = 0.5.
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Vertical velocity profiles at the cross section axis of symmetry (in a zone of
fully developed two-dimensional flow) are presented in Figure 7. It is seen that
the computed velocity profile declines more from the log-law curve for y = 1 than
for smaller y’s. The choices y = 0.25 and y = 0.5 give very close results.

0.4
y/h
0.6

0.8

0.34 0.38 0.12 0.16
{'.m/s

Fig. 7. U(y) at z = B/2 for L,/Ly = 1.0

Another point for discussion concerns dependence of the longitudinal pres-
sure gradient p, on parameter y. For steady uniform flow in an open channel
the pressure is hydrostatic and the average pressure gradient in a longitudinal
direction should be zero. Calculations give p, = —0.14 for y = 0.5 and p, = 0.44
for y = 0.5. So they stand for the choice of y of about 0.6.

Figure 8 shows vertical profiles of the eddy viscosity vy, at two distances from
the sidewall for y = 0.5. The solid line represents the theoretical parabolic curve
for the eddy viscosity in a two-dimensional steady turbulent flow. It is in accord-
ance with calculations at the centre of the channel but not near the side wall.

Figure 9 shows vertical distribution of the normalized Reynolds stress u’v'. The
solid line gives its two-dimensional theoretical linear distribution. At the channel
centre (z = B/2) computed values for u’v//u? are seen to match the theoretical
curve well, whereas near the wall (z = B/10) the profile is distorted due to the
influence of the sidewall.

All the previous analysis leads to the conclusion that results for (L;/L, =
1.0,y = 0.5 fit experimental data well. Very similar results are obtained for
L,/L, = 0.5,y = 0.5. They indicate that the model has low sensibility to L;/L,
when it ranges from 0.5 to 1.0. Note in addition that the choice of L, /Ly, = 1.0
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means that for this case turbulence is homogeneous since formulae (8)-(11), (14)
giVC lx =ty = lz.

5. Conclusions

1. The generalisation of Prandtl’s mixing length model may be used to calcu-
late velocity distribution in three-dimensional flows. The components of the
mixing length tensor for open channel flows are specified based on the well-
known formulae for mixing length in two-dimensional flows. Nikuradse’s
formula (13) is utilized to describe the lateral growth of the mixing length
components in the edge zones and Eq. (12) deduced from the log-wake law
— for their profiles in the vertical direction.

2. The Patankar & Spalding numerical procedure appeared to be quite ad-
equate for the case in question. Due to its marching feature in a stream-
wise direction the procedure demands much less computational resources
than solvers treating momentum equations as elliptical in the whole three-
dimensional space domain, i.e. pertaining derivatives in a streamwise direc-
tion. Steadiness of turbulent flows under consideration permits the assump-
tion of x-derivatives of stress tensor components to be negligible and to
obtain parabolic approximation to the Reynolds equation.

3. The best agreement between measured and calculated velocity distributions
for the steady turbulent flow in the rectangular channel is reached for ho-
mogeneous macroturbulence (I =1I, =1[;) when y is close to 0.5.

4. The middle zone in the channel flow (eddy viscosity varies parabolically in
the vertical direction and shear stress varies linearly against the distance
from the bottom) stretches from the channel axis to the vertical profiles
situated at a distance of 0.25 B from the side walls.
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