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Abstract

The paper presents an analysis of barotropic wave attenuation in the river outlet
distance due to friction forces at the bottom opposing the flow. The analysis concerns
various types of barotropic waves and different velocities of wave propagation. As
the results in comes that barotropic waves produce significant changes in free water
surface elevation. The changes depend on waves properties but it seems to be that
the most significant factor is the so called incidence angle which describes way of
increment of barotropic pressure.

Notations
c - wave propagation velocity, [m/s],
Cy — Chezy coefficient, [m/%/s],
g — carth gravity, [m/s?),
h(x,t) — dimensionless change of water depth, [m],
h(,s) — Laplace transformation of the 4 function,
Hx,t) - water depth, [m],
Hy — reference depth for AP, =0, [m],
I — water surface slope,
Iy, 1 — energy line slopes for undisturbed and disturbed flow,
L — horizontal extent of the change of atmospheric pressure,
[m],
m — coefficient in the wave formulae), [1/5?] Eq. (2),
Pa(x,t) — atmospheric pressure distribution, [hPa] = [kg/(ms?)],
P, o - reference atmospheric pressure, [hPa],

Pr(x,t) = Py(x,t)/P,p - relative atmospheric pressure at water surface,
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water surface elevation related to given reference level (for
Odra river outlet this is the level =500 cm NN — Amster-
dam), [m],

time scale of barotropic wave attenuation due to flow fric-
tion, [hour],

dimensionless change of water flow velocity (v/vp),
Laplace transformation of the u function,

water flow velocity, [m/s],

reference water flow velocity, [m/s],

dimensional variables (distance [m] and time [s]),

water particle acceleration due to horizontal gravity com-
ponent, [m/s?],

function describing the incidence angle and gradually varied
atmospheric pressure change,

position of elementary water particle in crossection x, [m],
change of water depth, [m],

maximal change of water depth during the passage of the
eye of low atmospheric pressure, [m],

maximal difference of atmospheric pressure over the cyc-
lone pass, [hPa],

time range of atmospheric pressure change defined by in-
cidence angle,[hour]

time scale of the atmospheric pressure change, [hour],
change of water flow velocity, [m/s],

amplitude of water levels relevant to the given time scale
AT, [m],

step function describing rapid atmospheric pressure change,
dimensionless velocity changes function (v2 — v3)/v,

maximal value of function ¢ obtained using incidence
angle model,

value of # calculated from step function model at the same
point,

Laplace transformation of function ¢,

dimensionless variables for x and r: & =x/(v3/g), T =

t/(vo/g),
water density, [kg/m?],

direct and inverse Laplace transformation operators,
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u,h — general description of Laplace transformation:
o0
7= L D) = [u De s,
0

h=chx )= fh(x,t)e"’dt. s=t1+iw.
0

1. Introduction

Measuring data in the lower Odra river network and Swina Strait afford several
examples of significant increase in water level during the passage of low atmo-
spheric pressure area over the region. These water level changes known as baro-
tropic waves propagate upstream the river network. The recorded propagation
velocity is about 10 m/s with height reaching 40-50 cm but as far as Widuchowa
in the upper part of the river system, the waves arc gradually attenuated. Field
measurements of this kind of waves give approximated estimation for their time
scale AT and water level changes AZ. On Fig. 1 several examples of such waves
arc shown, distinguished through the two parameters AT and AP.
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Fig. 1a. Atmospheric pressure (around 1000 hPa) and water level around the reference 500 cm in
period 13.09-19.09 1994 at Police. Time scale AT = 100 hours, AZ = 45 cm, AP, =30 hPa

Time scale AT in above examples varies from 30 to 150 hours, changes AZ of
water level fluctuate in the range from 20 to 75 cm, and atmospheric pressure in-
crement or decrement A P, varies from 10 to 30 hPa. Approximated formulas for
quantitative description of water level changes dependent on atmospheric pressure
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changes have been considered by authors in former papers (Meyer, Ewertowski
1996a, b). Taking into account and comparing these results with ficld measure-
ments, one can notice that increment of water level AZ in some cases is consider-
ably bigger than that one calculated from mentioned formulas. It results from the
fact that theoretical consideration assumes pressure changes as a step function.
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Fig. 1b. Atmospheric pressure (around 1000 hPa) and water level around the reference 500 cm in
period 19.05-23.05 1994 at Police. Time scale AT = 50 hours, AZ = 45 cm, AP, = 15 hPa
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Fig. 1c. Atmospheric pressure (around 1000 hPa) and water level around the reference 500 cm in
period 01.06-05.06 1995 at Police. Time scale AT = 40 hours, AZ = 25 cm, AP, = 11 hPa

Another important factor, which plays a significant role in shaping of baro-
tropic wave, can be flow friction. In previous papers (Meyer, Ewertowski 1996a,
b) the effect of friction forces has been neglected. Shapes of crests observed in
the falling phase of barotropic waves indicate that friction forces have significant
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Fig. 1d. Atmospheric pressure (around 1000 hPa) and water level around the reference 500 cm in
period 06.04-22.04 1996 at Police. Time scale AT = 150 hours, AZ =75 cm, AP, = 18 hPa
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Fig. 1e. Atmospheric pressure (around 1000 hPa) and water level around the reference 500 cm in
period 26.03-30.03 1997 at Police. Time scale AT = 35 hours, AZ = 50cm, AP, =25 hPa
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Fig. 1f. Atmospheric pressure (around 1000 hPa) and water level around the reference 500 cm in
period 26.03-30.03 1997 at Szczecin. Time scale AT = 30 hours, AZ = 45 cm, AP; =25 hPa
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meaning and should be considered in theoretical models. This should be com-
bined with the function of pressure distribution in time and space. In the previous
papers (Meyer, Ewertowski 1996a) a simple model of the atmospheric pressure
changes with the step function (Fig. 2a) was considered.

w

Fig. 2a. Step-wise model of the atmospheric pressure distribution function

For this function the solution for water level changes and flow velocity has been
obtained in straight channel. Another model of atmospheric pressure distribution
over a flowing river, which has been considered, was that one shown in Fig. 2b
(Meyer, Ewertowski 1996b)
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Fig. 2b. Exponent model of atmospheric pressure distribution
and in Fig. 2c (Meyer, Ewertowski 1996c):
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Fig. 2c. An example of the general function of atmospheric pressure

It is a matter of discussion how exactly the theoretical solution of water level
and flow velocity changes obtained for these solutions fit the real observations.
In the previous paper by Meyer, Ewertowski (1997) it was shown that the best
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fit was given when using the exponential model. However, differences between
calculations and observations are not always acceptable. For this reason the au-
thors decided to check the influence of flow friction on generation, shaping and
propagating of barotropic waves caused by low atmospheric pressure passing over
the channel.

2. Mathematical Description of the Phenomenon

It has been assumed here that the only important forces acting on water flow
in a straight rectangular channel are those of: inertia, friction, acceleration due

to gravity and atmospheric pressure. The basic schema of forces acting on water
volume are shown in Fig. 3.
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Fig. 3. Schema of the forces acting on water flow in test channel

Undisturbed uniform flow of water element bounded by abscissas x and
x +dx is described using a one-dimensional equation of motion %‘;ﬂ + vg";'; =

gl — gé‘?ﬁ. Next, the disturbance of water flow caused by change of atmospheric

pressure is: 3¢ + 2 =g, — gc‘!;—zH - %%ﬂ and subtracting them, one can obtain
the following equation:
dv—w) (W —v3 v—v} 1P
( 0)+ ( 0)=_g o )
ot ox CfH p ox

where bottom stresses in both cases are approximated by Chezy formula:

2
=l 1;—0 =glp - justified for undisturbed uniform flow in a flat-bed
pH CfH

rectangular channel,
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.0 v?

oH 80"
spheric pressure.

results from flow velocity change caused by the atmo-

Here is made an the assumption of small disturbances propagation, and thus,
water level slopes (g f;) change slighty. That assumption allows also to linearize
Eq. (1) by introducing the following simplification:

d(v—1w) _ ud (auz—vg) ?

ot 2 3t v}

For further analysis, dimensionless independent variables t, £ and a unknown
have been used

2 2
t X vt — 1

" g Evé/g’ i v &)
where ©# denotes dimensionless difference of instant square velocity and steady
square velocity. This approach is justified assuming that the velocity changes Av =
v — vp are small and backwater currents will not appear. For greater changes of
atmospheric pressure, which can reverse flow direction, numerical methods should
be used to obtain solution.

Using (3), the friction term in Eq. (1) can be expressed now as follow:

2 2 2 2 2
‘U—'LJO_ Vg V" —1

=g
¢H “OH

g =g Iyt

As initial condition there was assumed the following equations:

v3(0) — vuz B
w

We assume that change of atmospheric pressure is similar to the wave of disturb-

ance which propagates with ¢ velocity along the channel. It has been expressed
by step function:

Pa(x,1) = Poo+ APan (; - ’5)

1, t>x/c
0, t<x/c
over the channel before the disturbance.

In dimensionless co-ordinates it can be written as follows:

where: n(t — %) = and P, o is the constant atmospheric pressure

1, v> 2§

Pa(E,r)=Pa.0+APn’?(T_?‘E)‘ ”(’_%U"S)=[0, T<Bg
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After introducing these assumptions equation (1) takes the form:

a0 av 2AP3 (_@5)

at | 9 a;: ©)

Convenient way of solutions for equation (6) is to apply the Laplace transforma-
tion (Bobrowski 1981, Carslow 1948, Romanowski 1968). Laplace transformation
L of the atmospheric pressure derivative in equation (6) is equal to:

St (-l = e (o)

and further transformation of Eq. (6) gives the following ordinary differential
equation:

—_ 35 . I~ APa Vo
$T = 96,00 + 3¢ = 2T +2-22 exp( s?é) 7

Taking into account the initial condition (4), the equation (7) can be rewritten in
the form:

o Vo
e e P () ®
The solution of equation (8) is equal to:

#(s, &) = exp (—(s + 2Ip)§) x )
x ( P, - (_sl’CE.g) exp (—(s + 200)€) d& + const)

after integrating one can obtain that:

AP, v .\ exp (—RE&(s +m))
Px, §) = Zm exp (—m?e*:') i + (10)

+ const x exp(—s + 21pf)

To obtain the inverse Laplace transformation of equation (10) we shall apply
the shift property (Carslaw 1948, Bobrowski 1981) and so:

1
g |s+—MI = exp(—m1)1n(7),

g ‘cxp (—?E(s + m)) H_Lm} = exp(—mt)n (r - %E)
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The constant value in equation (10) can be obtained by assuming the presence of
internal condition which occurs at moment of passage of low atmospheric pressure
“eye” at the given point x. That can be formulated as follows:

vix,t)=v, Hx,t)=Hy for t=}i

3 11
v, t)=v, H(E,1)=Hy for r:g? (11}

Imposing the boundary condition gives const = 0, and thus solution for #(z, §) is
equal to:

AP, Yo vp
19(1', ,,:) —ZWCXP (—M(T —?E))U(T - ?E) (12)
Turning back to dimensional velocity function v(z, £) we have:

v(t, &) = vg\/l + Z—AI:“—— exp (—m (r - %f)) n (r - ?E) (13)

p(c — vo)vo

and, coming back to x, ¢ variables:

- 28k __2le o x _F
v(t.x)_vg\ﬁ+pv0(c_v0) cxp( vo(c — vo) (t C))n(t C) (14)

e : ‘ AP,
To simplify the formulas, it is convenient to put: 4 = 2p(c—1j)—' Then the
= Up) o
solution of v takes final form:
Vo vo
v(t, &) = ‘U()‘/l + Aexp (—m (r - ?if)) n (r — ?E) (15)

Changes of water level which take place during wave propagation can be estimated
using an simplified version of water flow continuity equation (Meyer, Ewertowski
1996b):

H
AH=—%AU=—%(U—U0) (16)

Thus, the derivative of AH with respect to 7 is equal to:

A
d(AH) _ _ﬂa_v 4 HyhA P, . (17)
ot c ot p(c — vg)?

exp (—m (v — 2£))
i+ e (o (: = 26) 1 (- 29)

X
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The rate of water level changes at some finite stretch of time At can be described
as follows:

oH gWAP,
el S - .- 5 B
ot p(c — vg)2C? " (13)
%1
» cXp (_ uu(c—otcln) (’f - 2;_))

[+ 28 e (~ L - 5)) n(c - %)

It is also possible to assume that time is running from culmination of water level
at point x. We have then At =t —x/c, and from Eq. (14):

2AP, 2gIc
vix, At) =y [1+ ————¢ (——At) 19
akeis O\/ pvoc —v0) P\ (e — v0) 1)
It arises that the time scale of wave attenuation is equal to:
1 2l _wlc—w) (—w)CiH CiH 0)
T we-v)' °  2gch 2gvoe 2g v

where Cy is velocity constant according to Chezy formula.
The changes of water velocity can be expressed as:

Ay (‘/1 + A (-%) - 1) 1)

and thus, combining Eq. (19) and (21), relative change of water level is given by

formulae:
AH At

In further part of the paper solutions Av(x,?), AH(x,t) have been analysed
in connection with admissible solution for AP, that has been described in
carlier paper (Meyer, Ewertowski 1997). Here, the admissible condition is: AP, >

Cc — Ug)Vo
APy i = LEZ VW 0/,
vo
One can also solve an inverse problem assuming, that extreme value of water

level is known as A Hpa and we are looking for parameter A. In that case we
have from Eq. (22) At =0, AH = AH,,ax and so:

and further

2¢ A Hyax & CZAHZM . cAHpyay (CAHM _2)
Hyvo Hgvg Hovo \ How
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The approximated expression for the formula (22) can be obtained after putting
V1+x 2= 14x/2. It results in:

¢ AHpa —At
HAD = AH [ £ Ay
AH(At) = AH, u(vo A )exp( T ) (23)

3. Examples of Calculations

Including the friction forces of motion in this wave flow gives an additional, ex-
ponential term, which arises in theoretical solutions. This term causes gradual
attenuation of the wave. The rate of water level and velocity change, which has
been generated by sudden change of atmospheric pressure field, is described by
time scale Ty. Time scale depends on hydraulic parameters of the flow.

In the case of river Odra outlet it has been assumed that mean flow velo-
city varies in the range of vy € (0.05, 0.2) m/s, hydraulic slope Ip € (107, 1073),
mean depth Hy €< 5, 10 > m, and Chezy coefficient C; €< 30, 40 > m!/%/s. At-
mospheric pressure has been modelled using the step function for several values
of AF,. To investigate the function of relative velocity and level changes, com-
putations have been made for different cases. Results of these calculations are
presented on Figs. 4a, b, 5a, b. Title of each figure describes the kind of depend-
ence being investigated.

— AT ... e vi=0.Lim/s, e XA, ..,

h
E

Fig. 4a. Dependence of relative velocity changes with regard to mean velocity flow calculated for
Hy =10 m, Cf =40 m'/%s, ¢ = 10 m/s, AP, = 20 hPa, Tp = 4.5 hour

Similar results have been obtained for different values of propagation velocity
¢, where smaller values of ¢ give bigger extreme values of u (from 2.5 for ¢ = 8
m/s to 1.8 for ¢ = 16 m/s), and 4 (from 0.98 for ¢ = 8 m/s to 0.995 for ¢ = 16 m/s).

Also results for different values of atmospheric pressure changes have similar
shape but in that case, bigger values of AP, give bigger extreme values of u (from
1.4 for AP, = 5 hPa to 2.2 for AP, = 20 hPa), and A (from 0.98 for ¢ = 8 m/s to
0.995 for ¢ = 16 m/s).
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Fig. 4b. Dependence of relative depth changes with regard to mean velocity flow calculated for
Hy =10 m, C; =40 m"/%s, c = 10 m/s, AP, = 20 hPa, Ty = 4.5 hour
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Fig. 5a. Dependence of relative velocity changes with regard to time scale of disturbance
calculated for Hy = 5.10 m, C; = 35.40 m'/%s, vp = 0.10 m/s, c = 8 m/s, AP, = 20 hPa

= T0= 0.9h w TQ= |.7h === TO0=2.2h —— TO=2.3h == T0=3.4h m— T0=4.5h

1.005

1.000

|

0.995

0.990

b=H/HO (HO=5,10m)

0.985

0.980

[ 5 10 15 20 25
(t-x/cMTO

Fig. 5b. Dependence of relative depth changes with regard to time scale of disturbance calculated
for Hy = 5.10 m, Cy = 35.40 m"/%s, vo = 0.10 m/s, ¢ = 8 m/s, AP, = 20 hPa
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4. Influence of the Atmospheric Pressure Incidence Angle on Barotropic
Wave

Modelling of the temporal atmospheric pressure changes at fixed point x using
step function given in Fig. 2a is rather simplification of the nature. From the
authors investigations it comes that important influence on the wave shape has
the pressure gradient while low or high pressure “eye” passes over the given river
point (Figs 1a-1f). In the present paper it has been called as the time incidence
angle. To make the model of atmospheric pressure more realistic, method of
superposition of solutions for family of step functions gradually shifted by some
time increment was introduced and it is shown on Fig. 6.

-~
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"
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\ |
AP, N |

Fig. 6. Superposition of step function and incidence angle for atmospheric pressure changes

In the case of superposition total change of atmospheric pressure at point x
can be written as follows:

AP(x,t) = ZN: (AP::,H? (t + At; — %)) (24)
=1

where: AP, ; = AF;(max)/N. Atmospheric pressure function expressed by func-
tion (24) has been used for evaluating of velocity and water levels changes ac-
cordingly to formulas (21) and (22).

Several numerical calculations have been performed for three different time
steps Aty, Al, At3, for individual “stripes” and also for different incidence angles
defined by ratio A P,/At. Results of that calculations are shown in the Fig. 7a, b.
The legend of each figure gives information about time step of the pressure stripes
(At; =dt;) and the incidence angle (knt) defined as knt = (A P,(max)/(NAt;).
The case in the Fig. 7 assumes division into 64 “stripes” with time steps At; = 0.1
hour, At; = 0.15 hour, Atz = 0.2 hour. It is easy to notice that the solution for u
and A tends to continuos one when more “stripes” are applied.

An attempt was made to obtain an analytical solution for the case of gradually
varying pressure. We have

Py(x,t) = Pog+ APa(x,t, At) (25)
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Fig. 7a. Relative change of water velocity for partition of AP, = 20 hPa into 64 stripes calculated
for Hy = 10 m, Cy = 40 m*/%s, vp = 0.10 m/s, ¢ = 10 m/s, Ty = 2.2 hour
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Fig. 7b. Relative change of water depth for partition of AP, =20 hPa into 64 stripes calculated
for Hy = 10 m, Cy = 40 m'/%s, vp = 0.10 m/s, ¢ = 10 m/s, Ty = 2.2 hour

where:
0 , t<x/c
a1, A =1 L L<t<ItA
1 , t>x/c+ At

The P,(x,t) function is illustrated by the following schema in Fig. 8.
In dimensionless form relationships (25) can be written as follows:

PIET) = fa =1+ AP“O[(E, T, AT) (26)

P, ,0 Pa,(]
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Fig. 8. Schema of atmospheric pressure change using time incidence angle
At
where: At = —,
v/g
0 v F R G
aff, 7, Ar) = { UK | mp <y < Mgy AL
1 T > 4 AT
After putting this formula to equation of motion (6) we can obtain:
9% 9 2APF,0 0
e D ——a(f, T, A 27
P +3§‘ 0 p= BSW(E T, At) (27)
The solution was obtained by using Laplace transformation of function:
e—s(w/c)
A =3 1 _— —sAr
Lia, 1, Ar)} it (1—e™%)
and Laplace transformation of the whole equation (27) gives:
5 _ —s(vo/c)k
i + (¢ + 2 = 7 i (1- e"‘“) (28)
0 5
st Dol
pUocAT
Solution of this ordinary differential equation is equal to:
_ D’e—s(uo/c)s D,g—S((vu/c)E-FAT) i
t=Do-m--rv-----D—
S(s +m) s(s +m) (29)
2y F D
where: m = ; = .
1—wy/c 1 —vg/c

Inverse Laplace transformation of function F(s) = 1/s(s + m) gives:
1 -mrt
LHF@E) = f(r) = = (1—e™)
Taking into account the shift law, one can obtain that

L He ™ F@))= f(r—a)= % (1 —e"’"("_")) for t>a=0



Flow Friction Forces Effect on Barotropic Wave Attenuation ... 61

what can be rewrite as:
1
LYe ™ F@)) = f(r) = = (1—e™D) n(z —a)

Following the above rule the solution for ¢ is equal to:

B, T, At) = D'c7! {

D Vo
- — p—m(r—(vo/c)§) -
= — [ - ettty (s - i) 4 (30)

— (1 — e mE—/}-40) , (r _ BCQE _ At)]

S /c)k ond e—5((w/c)s+AT)
—pp=lys -
e R

In term of variables x, ¢ the solution takes the following form:
— p[(1 _ /)T _x
2,180 = D"[(1-e Ju(x-3)+
{1 _ lt—xjc—A1) T LE
(1-e )n (x - At)] (1)

C}Hy(c — w) ARCiHy AP,

2gvgc pvicg At — peg At

Finally, velocity of water flow with friction complying Chezy law and upon the
influence of atmospheric pressure described by equation (25) is given by relation-
ship:

where: T = [s], D" =

v, 1) =vv1+2 (32)

where ¢ is given by (31). Change of water depth can be evaluated from equation
(16) giving:

ani(xst)"H():Aani:_@ (V1+0_1) (33)

Several computations of relative velocity u = v(x,?)/vp and depth h = H
(x,t)/Hy have been made using lately obtained solutions (32) and (33). One of
the parameters is time incidence angle described as A P,/At. Some of results are
shown in Fig. 9 and it can be compared to Fig. 7a, b. It can noticed similarity
between analytical (Fig. 9) and numerical ones from Fig. 7a, b.

Comparison between vjnc; solution (Eq.32) and vgp solution (Eq.14) is given
in the Fig. 10 for ¢ = 10 m/s, vo = 0.1 m/s, AP, = 20 hPa, At = 10 h and for five
different values of friction slope Io.

One can easily find that maximum of function (£, r, At) given by equation
(30), which appeared at time 7 = (vo/c)§ + At, and is equal to

AP,

max T4 (] _ —-mAt 34
I9mr:i pI(]UoCAT ( e ) ( )
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Fig. 9. Relative change of water velocity and depth from analytical solution of incidence angle for
AP, =20 hPa calculated for Hy = 10 m, Cy =40 m'/%s, vp = 0.10 m/s, ¢ = 10 m/s, Ty = 2.2 hour
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Fig. 10. Velocity relation vjnc; /vstep during 30 hours for several friction slopes I
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On the other hand, solution (12) of #(§, 7, At) at the same time for the step
function gives:
2AP,
9 = A —mAr _ a -mAt
S ) p(c — vo)ug

and relative difference of these values can be expressed as:

Ustep — Vinei _ 11 (emar

-1 35
When At — 0 then the expression on right hand side of (35) is equal to 1 —
m/2ly ~ 0 what confirms that both solutions give the same value for At — 0.

Instead of 9%, ¥y, we can calculate the relative difference of velocity ac-
cording to the following formula (in dimensional form):

_ max D" (1 —e=2/T) 41
"9-”5'1’ ﬂmc: (T, &8 =1 = \/ ( )
step «/e““i b1

where attenuation time scale Tj is given by equation (20) and coefficients D", A
have been defined by Eq. (14) and (31).
Using continuity equation (16) and performing similar transformations as above,
one can obtain relative depth difference as:

Hyep — Hipii'

L — p—At/ T — S A=At/ T;
inci = B (\/D”(l E '/ D)+1 Ae=24] 0+1)

Hirep 1—§(¢A—yﬂvﬁ+1—Q

(36)

(37)

Functions given by formulas (36) , (37) has been examined for several values of Ty
assuming A P, = 20 hPa. Results of the calculations of the velocity changes (Eq.
36) are shown in Fig. 11a.

From the figure it comes that extreme values of v(x,?) function calculated
from step function model (Eq. 32) at t =x/c + At are generally much smaller
than those from the incidence angle model. That results from the fact that step
function solution quickly decreases with time from its extreme value at t = x /c.

Results of the calculations of water depth using equation (37) are shown in
Fig. 11b. The values of water depth, calculated from the step function model,
are generally greater than those from the incidence angle model, because velocity
quickly increases with time.

Numerical calculations were proceeded to compare extreme values for step
function model (at ¢t =x/c) and incidence angle model (at t =x/c + At) as a
function of At for different values of friction slope Iy:

v 14+ D" (1 - exp(—At/Tg))

Ustep 14+ D

(38)
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Fig. 11a. Relative difference of water velocity between the step function solution and maximum of
the time incidence angle solution as a function of At , Ty
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Fig. 11b. Relative difference of water depth between the step function solution and maximum of
the time incidence angle solution as a function of At , Tp

Results of calculations are shown on Fig. 12 where we can observe that extreme
values of velocity calculated from step function model are greater than those from
the incidence angle model. The difference is high for small values of At. For At
greater than 10 hours and for the time of attenuation Tj smaller than 1 hour, the
difference reaches range 0.5 to 0.6. That means that incidence angle model gives
velocity half of that from step function model. .

Similar calculations were performed for depth extreme values of step function
model (at ¢ = x /c) and incidence angle model (at t = x /c + At) as a function of
At:

Hp 1—w/e (/1+ D" (1 - exp(-at/ ) - 1) -
step 1—w/c (~/1+_A - 1)
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Fig. 12a. Relation of maximal flow velocity from incidence angle model to the maximum from
step function model as a function of At, Iy
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Fig. 12b. Relation of maximal flow depth from incidence angle model to the maximum from step
function model as a function of At, Iy

In Fig. 12b we can sce, that extreme water depth differences calculated from
step function model are smaller than those from the incidence angle model. The
greatest difference between the both solutions amounts to 1.2% of the water depth
calculated from step function model.

5. Concluding Remarks

1. The paper presents the, mathematical model of barotropic river wave in-
duced by atmospheric pressure changes. The model takes into account wave
attenuation due to friction forces of water flow, which exist in any real flow.
To simulate the rapid atmospheric pressure variation the step function has
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been applied. The phenomenon was analysed in simplified straight channel
with constant bottom slope. For conditions of steady and one-dimensional
water movement a simplified solutions have been obtained describing velo-
city and depth changes.

. Time scale of the barotropic wave attenuation caused by friction forces

confirms field observations for Odra river outlet. Time scale depends on hy-
draulic slope, depth of flow, undisturbed flow velocity and wave propagation
velocity. In case of lower Odra it ranges from 1 to 10 hours.

. The function of atmospheric pressure changes has significant influence on

maximal values of water flow velocity and depth. The influence can be
described in approximated manner by evaluation so called time incidence
angle. In this paper the time incidence angle has been analysed in to ways.
First, using superposition of stripes pressure function with time steps. The
second, the analytical solution for applying gradually varying pressure.

. Detailed analysis of the influence of time incidence angle for the wave ele-

ments indicates, that gradual increase of atmospheric pressure over a chan-
nel diminish the extreme values of water velocity and depth. For very slow
changes of atmospheric pressure extreme increments of depth calculated
from both methods differs up to 50%.

. On the basis of researches carried out by authors, two essential conclusions

referring to the influence of flow friction on the barotropic wave propagation
can be formulated:

(a) Taking into consideration in calculations the friction forces causes baro-
tropic wave attenuation. Along with the wave its height and propaga-
tion velocity decrease.

(b) Depending on the function describing pressure changes if the friction
forces are included the resulting barotropic wave in the river is of
different shape. Two functions were taken for analysis: step function
(Eq. 5) and gradually varying function (Eq. 25). If we assume that
both functions gives the same AP, max the resulting wave will be with
different flow elements ie: depth and velocity. The case of gradually
varying pressure gives wave with depth changes smaller by comparison
to step function case. It confirms field observations that there exist
no direct relation between changes of depth and pressure. Additional
factor is needed to explain the differences. This factor in the present
research was introduced as incidence angle A P,/At.

6. Problems for further researching are listed bellow:

— analysis of real atmospheric pressure field evaluation over the river
area based upon recorded data,
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— channel cross section shape influence on the barotropic wave propaga-
tion,

— formulation of the numerical solution of the considered unsteady water
flow in the river network with practical applications.
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