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Abstract

The paper deals with modelling of two indicators characterizing oxygen conditions of
a river, which are: biochemical oxygen demand (BOD) and dissolved oxygen (DO). To
describe the evolution of these two indicators, advection-diffusion transport equations
are used. To solve these equations the decomposition technique is proposed. This
approach enables the splitting up of the advection-diffusion equation into parts and
independent solving of both parts in each time step. The advection equation is solved
by the characteristics method with the spline function used in interpolation. To solve
the diffusion equation the finite-elements method with the Crank-Nicolson scheme
to integrate in time is applied. The proposed method ensures very small numerical
errors. The method was tested using the known analytical solution and the results of
measurements for the Reda river.

1. Introduction

Assuming that dissolved matter is fully mixed in the river cross-section the eval-
uation of biochemical oxygen demand (BOD) and dissolved oxygen DO) in the
stream flow can be described by two one-dimensional equations (Elliot and James
1984):
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)+(K1 +K3)L =0, (1)

2—?+U%—%%(£AZ—S)—Kz(Cs—C)+K1L+B=O, (2)
where:
t - time [s],
X - position [m],
L - biochemical oxygen demand (BOD) concentration of [mgl™'],
C - concentration of dissolved oxygen (DO) of [mgl~!],
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— average velocity of water flow [ms~!],

— coefficient of longitudinal dispersion [m? s~1].
wetted cross-sectional area [m?],

— the BOD reaction rate [s~!],

— the reaeration rate coefficient [s71],

LS
|

K3 - the rate coefficient for removal of BOD by sedimentation and ad-
sorption [s7!],

C; - the saturated dissolved oxygen concentration [mgl~!],

B

— the net removal rate of dissolved oxygen for all processes other than
biochemical oxidation.

In this paper a numerical solution of presented equation is considered first
of all. The forms of both equations describing BOD and DO transport are not
discussed.

Usually in the rivers the advection transport dominates over the diffusion. In
such a case the influence of the diffusion term is relatively small, thus it is found to
assume the invariability of the longitudinal dispersion coefficient. For E = const
Eqgs. (1) and (2) can be transformed into:

oL E3A\ oL 3%L
ac E3A)\ aC 9ZL

To solve Eqgs. (3) and (4) the knowledge of average velocities in the river’s
cross-sections U(x, t) and cross-section areas A(x, t) are needed. This information
can be obtained by previously solving the flow equation in an open channel.
Assuming a nonuniform steady flow these variables can be defined solving the
steady state flow equation in the channel network for the imposed discharges.
For the unsteady flow to find the functions U(x, t) and A(x, t) one needs to solve
the system of de Saint Venant equations with the proper initial and boundary
conditions.

Egs. (3) and (4) arc parabolic type partial differential equations. In real con-
ditions when any boundary conditions can occur and while the velocity and the
cross-section vary in time and space, these equations can be solved only by nu-
merical methods. It is known that the advection-diffusion equation is very difficult
to solve when the advection transport dominates. The standard schemes of the
finite-difference method, as well as the finite-element method, lead very often to
non-physical solutions. In these solutions one can notice the presence of numer-
ical diffusion or oscillations. This is caused by numerical errors of dissipation and
dispersion generated by these schemes. The detailed explanation of this prob-
lem is presented by Fletcher (1991) for example. Recently, some special new
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algorithms, solving advection-diffusion equations having much better properties
than the standard schemes, have been proposed. Unfortunately the presented
algorithms are sometimes very complicated. The different approaches to solve
the transport equation with the dominated advection are presented by: Pantakar
(1980), Fletcher (1991), Holly and Preissmann (1977), Neumann (1984), Yeh et
al. (1992), Szymkiewicz (1995).

One of the most efficient techniques to solve Egs. (3) and (4) is the splitting
method. This approach is very often used to solve many different problems. It
consists of splitting the transport equation into the advection part and the diffusion
part in each time step and solving the two equations obtained separately. To solve
the advection-diffusion equation this approach has already been introduced by
Holly and Priessmann (1977) using the characteristic method for both parts of the
split equation. For the interpolation they used the third degree polynomial based
on two nodes. Another example of the splitting method has been presented by
Szymkiewicz (1993). In this case the advection equation was solved by the method
of the characteristic also but with third degree spline function to interpolation
whereas the diffusion equation by the finite elements method. This algorithm was
elaborated for the advection-diffusion equation with constant parameters, i.e. for
the steady and uniform flow in the channel (U = const) and for the constant
coefficient of a longitudinal dispersion (E = const). The algorithm presented
here is more general because it deals with the equations with variable parameters
solved for the channels network.

2. The Initial-Boundary Conditions

For Egs. (3) and (4) the initial-boundary problem is formulated. Functions L(x, t)
and C(x, ¢) must satisfy the equations for 0 <x < X (where X is the length of the
river reach) and ¢ > 0, and the imposed initial-boundary conditions. The initial
conditions are described as follows:

fort =0L(x,t)=Lix)and Cx,t)=Ci(x)for0<x < X
where L;(x) describes the initial distribution of BOD and C;(x) describes the
initial distribution of DO along the river reach considered.
The boundary conditions are defined as follows:
— for x = 0 the following functions are imposed:

LO,1) = Lo(®)
fort >0 %)
C0,1) = Co(®)
— for x = X are imposed the functions:
Lxn=LO1g 59 (6a)

CX.t)=C@)
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or their gradients:

aL

a 5 = (p]_(t) fort > 0 (ﬁb)
and

?E- =¢c(t) fort > 0. (6c)

ox |,

As in practice there are no possibilities of satisfing the required conditions
at the boundary x = X, it is usually assumed that the diffusion flux is equal to
zero at the downstream end of the river reach, i.e. ¢.(¢), ¢c(t) = 0. This means
that at the downstream end the diffusive flux is neglected and only the advection
transport occurs. Where the advection transport dominates, the influence of this
simplification is insignificant. For transport in the channels network, with the
exception of the boundary conditions imposed at the external points, as presented
above, the additional conditions should be introduced at the points of the channels
connection (Fig. 1a) as wellas at pollutants entrance (Fig. 1b). In both types of the
inner boundaries the additional condition results from the mass conservation law,
which includes the advection transport only. The accepted initial and boundary
conditions enable of the solving Egs. (3) and (4) for any open channels network.

Fig. 1. The kinds of internal boundaries: a) the point of connection of channels; b) the point of
entrance of pollutants

3. Solution of Advection-Diffusion Transport Equation

The splitting method
Egs. (3) and (4) can be rewritten as follows:

3
S HF=0 ()

where:

¢ - is the function L or C,
F - includes all terms of the equation (1) or (2) except time derivative.
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The general formula of integration of this equation at time interval At is as

follows:
t4At

Griar = P + A f Fdt (8)

t

where: ¢y and ¢, a; are the values at time level ¢ and ¢ + At.

Most of the known methods of integration for differential equation are based
on the above formula. They differ in the manner of spatial approximation of
the differential operators included in F, and in the method of integration in Eq.
(8). From the derivation of the transport equation it results that it constitutes
the superposition of the two different elementary processes: advection and diffu-
sion. The variable F that occurs in Eq. (7) can be presented in the form of two
components:

F=F® 4+ F® (9)
where:

FO _  represents the advection part,
F@ _ represents the diffusion part including the source terms.

Consequently this equation can be written in the following form:

3¢

T FO L F@ (10)
Its solution is as follows:
t+ At t+ At t+At
Grrnr = ¢y + At f (F“) + F(z)) dt = ¢y + At f FOdt 4+ At f F®dy,
4 ! !
(11)
Introducing the additional variable:
t+At
ou = & + At f FWdt (12)

t
the Eq. (11) will assume a form which is the solution of Eq. (7):

t+AL
Dryar = ¢'r(i)m + At f F®dt, (13)
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The above algorithm can be written in a more general form. The solution of
advection-diffusion equation in the time interval [¢,¢ + Af] can be obtained as
the result of solutions of the following series of equations:

()

af;—, +F® =0 (14a)
with the initial conditions: ¢{" = ¢,
()]

with the initial condition: ¢{> = ¢, .
Finally the unknown value ¢ at time level ¢ + Ar equals: ¢rpar = ¢,(?At. With
reference to Eqgs. (3) and (4) the described process of solution is as follows:

— for the biochemical oxygen demand (BOD):

LW EdA\ oL
at (U - Z}I{) x 0 {159)
with the initial condition: L = I,
L@ 21 @
9 gL + K1+ K3)LP =0 (15b)

a  ox?
, - i 2 1
with the initial condition: L® = L,( ,,? i
— for dissolved oxygen (DO):

acm E3A\ aC™
2 =0 6
a1 (U Aax) ax (168)
with the initial condition: C’ = C
c® 20
3at -Eaax2 -K(C -0+ KLP+B=0 (16b)

with the initial condition: C? = C%,,.
Solving the Eqgs. (153, b) and (164, b) in every time step the demanded values at
time level ¢ + At : Lipar = L, and Cypar = C2,, are obtained.

As mentioned before, to solve the advection equation the characteristic
method and for the diffusion equation, the finite-elements method are proposed.

The solution of the advection equation
The advection equation in general form is considered:
dp 99

s Ok O 17
ot Vo (37
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where v = v(x, ?) is a velocity.

Equations of this type are (15a) as well as (16a). It is well known that the
standard schemes of the finite-difference and finite-element methods do not give
satisfactory results. For example the backward difference scheme generates the
great numerical diffusion and the Crank-Nicolson scheme leads to solutions with
oscillations. In this paper the characteristics method will be applied. Equation
(17) in the Lagrange system moving with velocity v can be written as follows:

D¢

kP |

Dr (18a)
for

dx

where D¢ /Dt represents the material derivative of the function ¢.

This means that the concentration does not change along the curve (18b)
which is the characteristic of Eq. (17). The shape of this characteristic passing
through any node of the numerical mesh is shown in Fig. 2. The characteristic
passing through the node (xj,#,41) crosses time level #,, at point x*. Thus if
the concentration at this point at time ¢, is known, then, according to the Eq.
(18a), the concentration at point x; at level #,,, will be known also. To define x*
one needs to integrate the characteristic equation in time interval [t,, ,41]. The
characteristic Eq. (18b) is the ordinary differential equation. Its solution should
satisfy the initial condition, i.e:

x(t =tht1) = xj

One can obtain the approximate solution, using, for example, the Runge-Kutta
fourth order method (Stoer and Bulirsh 1980):

ki = Atf (tai1, X;j), (19a)
At k

ky = Atf (fn+1 + -E-,Xj + ?;*) , (19b)
At k

ks = Atf (tn+l + T,x,- + Ez) , (19¢c)

ks = Atf (tnp1 + AL x; +k3), (19d)
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a)
ttat 1 — n+l
t 1 4 { n
o J
X xj
b)
t+at T /F- nt+l
t £ n
2 xt ]

t+at /—-n—' n+1

Fig. 2. The possible location of characteristic passing through the node (x;,#,,1) depending on
time step At
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1
x*=xj+g(k1 + 2k + 2k3 + ky). (19¢)

Because the integration is being carried out in decreasing time, At has a neg-
ative value. The velocity v inside the mesh can be computed by interpolation
between the neighbouring nodes of coordinates: (xj_1, %), (Xj—1.th+1), &, tns1)
and (x;, #,). The concentration at point x* can be solved by interpolation betweeen
mesh nodes at time level #,. As the standard ways of interpolation do not afford
satisfactory results (Cunge et al. 1980) application of interpolation using the third
degree spline function is proposed in the form:

P0) =¢j + (& —x;) + B (6 —x;)" + 5 (x —x))° (20)
forxj <x <xjp1andj=12,....M-1
where:
s — is the value of the function at j node,
aj, Bj,y; — are the coefficients.

This formula coincides with Taylor’s expansion of the function ¢ at points x;. The
cocfficients of Eq. (20) are defined as follows:

_ | ol 13%
T axl, Y T 22| T

and are calculated using the nodal values ¢;(j =1,2,3,..., M). If the values of
¢ arec known at all nodes at level ¢,, we can describe the polynomial (20) solving
its coefficient o, B, 3 in all intervals j =1,2,3,..., M - 1.

The spline function and the manner of solving its coefficients is presented in
greater detail for example by Stoer (1979). Finding the coefficients requires the
solving of the algebraic system of lincar equations with tridiagonal matrix. It is
therefore a similar effort of calculation as needed by the implicite scheme, which
also involves solving the system of equations with tradiagonal matrix in every time
step.

Knowing the coefficients of the polynomial (20) one can define the concen-
tration at all nodes at time level #,,41:

Girine1 =@ +aj(x* —hj) + B x* —x))* +y " —x;)° (21)

The solving of a diffusion equation

a; B

’

Xj

The diffusion equation in the following form is considered:

2 _ 0% _

ar Eaxr =0 (22)

where:
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E - is the longitudinal dispersion coefficient,
¢ — is the source term, which for Eq. (1) is ¢ = —(Kj + K3)L and for
Eq. (2) is ¢ = K2(C; — C) — K, L — B.

Both (16b) and (15b) are equations of this kind. The diffusion equation can
be solved by applying the well known methods. Most of them guarantee satisfact-
ory accuracy and do not cause any numerical problems. Here, the finite element
method with the linear shape functions is applied. The standard operation, ac-
cording to Galerkin’s procedure (Zienkiewicz 1972) leads to the following system
of ordinary differential equations:

dé

dt
with the initial condition ¢ = ¢ A,

where: § and A are the tridiagonal matrices,

¢ =COI{¢1¢2, ...¢M},

d¢ d¢y d¢  dom
ar “"lld: dar Ti}"}

F is the vector representing the source terms.
To solve this system the trapezoidal rule is applied:

S—T +A¢+F=0 (23)

A
i =@+ ?t (¢ + 1) (24)

with: ¢' = d¢/dt.
It leads to the following system of algebraic equations with the tridiagonal
matrices:

1
(S + —AIA) Srinr = (S - }'AI‘A) & — %At (Fy + Frpar). (25)

2 2
The solution of this system of equations is the vector ¢ a,, which is the solution
of the diffusion equation at time level ¢ + At required.

4. The Stability and Accuracy of the Solution

The applied approach towards solving the transport advection-diffusion equation
is based mainly on using the different techniques to solve the equations obtained
by the decomposition of the governing equation. Namely the advection equation
has been solved using the characteristic method and the diffusion one by the
Crank-Nicolson scheme with the finite element method.

As far as the characteristics method is concerned, the version used in this paper
does not restrict the applied time step At. The interpolation formula (20) holds
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for the situation shown in Fig. 2a. In this case the characteristic passing through
the node (x;, £,41) crosses the axis x between two nodes x;j_; and x;. Should the
applied integration step be bigger, the characteristic point of passage (xj,f;41)
would cross axis x between two other nodes, for example as shown in Fig. 2b. The
concentration at the node (x;, #,+1) would therefore be the result of interpolation
between a pair of nodes other than shown in Fig. 2b. Thus, a large time step
of integration would only cause a change of interpolation formula (20). If the
characteristic passing through the point (x;j, ,41) does not cross line ¢ = ¢, but
crosses the boundary x = 0 (Fig. 2c), the value of concentration at point (x;, 1)
can be obtained on the basis of an imposed boundary condition, at the boundary
x = 0. As far as the numerical stability of Crank-Nicolson scheme is concerned,
it is known (Fletcher 1991), that for the diffusion equation it is absolutely stable.
Therefore the proposed algorithm of the advection - diffusion equation solution
does not require any limitations of At because of the numerical stability.

Another important feature of the numerical scheme is the accuracy of approx-
imation. In the case of the advection equation interpolation by the spline function
is used. Its equation (21) is otherwise an expansion of the ¢ function into Taylor’s
series including terms with the third order derivative. It is therefore the approx-
imation of the third order with regard to x. The Runge-Kutta method applied for
integrating of the characteristic is an approximation of the fourth order. Whereas
the Crank-Nicolson scheme applied with the finite-elements to time integration
of the diffusion equation is an approximation of the second order with regard
to time ¢ and third order to x (Fletcher 1991). Thus one can assume that the
proposed algorithm ensures the second order approximation with regard to ¢ and
third order with regard to x.

5. Examples of Calculations

The efficiency of the proposed algorithm was checked by a series of test calcu-
lations which are compared with the analytical solutions. These tests verify the
numerical diffusion produced by the method. The calculations were carried out
for a simple channel network with the structure created by four arms as shown
in Fig. 3. Each arm is divided into constant intervals of length Ax. It is assumed
that a steady and uniform flow exists in the channels and that the flow discharge
in the reach A — C and B - Cis Q = 5 m%/s and the cross-sectional area 4 = 10
m?, whereas for C-D and D -E Q = 10 m%/ s and A = 20 m? are accepted.
First the pure advection equation was solved. The initial condition was as-
sumed in the form of triangular distribution of concentration along A — C and
B - C. At nodes A and B the boundary conditions in the form ¢(f) = 0 = const
were imposed. As the velocities in the channels are constant, the analytical solu-
tion is the initial distribution shifted without any deformation along the channel
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Fig. 3. Channel network accepted for testing

axis. The calculations were carried out for the above data, Ax = 100 m and vari-
ous values of time steps. The results obtained for the advective Courant numbers
Ca = UAt/Ax = 1.5, 1.0 and 0.25 corresponding to time ¢ = 7200 s and ¢t = 14400
s are presented in Fig. 4. One can state that only a slight reduction of the peak
concentration and slight oscillations are observed. With the decreasing of Ax the
accuracy of solutions increases significantly. It results from the properties of the
spline function, which for Ax — 0 tends to the interpolated function.

1.0 -
t=0s t =7200s t = 14400s
8 o050 -
o
g
§ oo
analytical
e Cr=02s
. Cr=15
' o=y T - |
0.00 4.00 8.00 12.00

distance [km ]

Fig. 4. The pure advective transport of the initial concentration in the form of a triangle

The second example deals with the propagation of the sharp front of concen-
tration caused simultanously by advection and diffusion (without source terms).
In the channels network as in the preceding example, the initial concentration
is equal to zero, which means C(x,f = 0) =0 for x > 0. At nodes A and B the

B T p bl PR b e n 8 Sy 5 S
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accepted boundary conditions are as follows:

Ofort =0

C(x=0")={ 1fort >0

whereas at the node E C(x = o0, t) = 0is imposed. For the above initial-boundary
conditions the advective-diffusive transport equation has an analytical solution
(Xue and Xin 1988):

1 x —Ut 1 Ux x + Ut
Cx,t)=—erfc +-e (—)er c( ) 26
w0 () +a (F)ore () @
In Fig. 5 the comparison between the analytical and numerical solution is presen-
ted. This solution is obtained for Ax = 100 m, C, = 0.6 and E = 10 m?s. It
means that in this case the Peclet number P, = 5 (P. = UAx/E), which indicates

that the advection dominates in the transport process. Insignificant differences
between the two solutions confirm good properties of the proposed method.

1.0

kt=72005 =14400s

concentration C/Co
o
(3]
]

0.0 T-—-
0.00

\ =

8.00 12.00
distance [ km ]

Fig. 5. Solution for the sharp front concentration transport caused by advection and diffusion

The third example deals with the solution of the advection-diffusion transport
with the source term, which describes the decay of the transported matter. For the
channels network as preceding, similar initial-boundary conditions are imposed.
In this case the analytical solution for a steady state is as follows (Elliott and
James 1984);

C(x) = Cpexp (%(1 —m)x) (x>0 (27)

1
KE\?
m= (1+4ﬁ) i

where:
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Co — concentration at the upstream end (node A and B),
K - constant of decay.

In Fig. 6 the analytical and numerical solutions are presented. They were obtained
for C, =1, K =0.0004 57!, E = 50 m%s~!, Ax = 100 m. It can be seen that also
in this case the good conformity between both solutions is obtained.

1.0 -\

§

05 5
— analytical
numerical
0.0 T T Y T T |
0.00 12.00

4.00 8.00
distance [ km ]

Fig. 6. Solution of the advection-diffusion transport with source term for a steady state

To illustrate the solution of Eqgs. (1) and (2) describing the transport of BOD
and DO the discharge of the waste water at point D (Fig. 3) is assumed. Initially,
BOD (x,t =0) and DO (x,t =0) = 5 mg I"! is imposed. The time constant
results in the BOD increasing to 30 mg I~ at point D. For the network of the
same channels, the hydraulic data and for of the Ky =1.2-10~*s™!, K, =9.10~*
sLEK;=5.10%s"1,C =5mgl™}, E=5m?s"!, At =100 s, Ax = 100 m the
obtained results of calculations are presented in Fig. 7. The computed shape of
BOD(x) and DO(x) is typical downstream of the point discharging the waste
water of the time constant load.

The last example deals with the modelling of BOD and DO for a real river,
the Reda 46 km long, which flows into the Gulf of Gdafisk. At three control
stations S, §; and S3 located along the river with distance 6300 m between S;
and 5> and 2000 m between S> and S3, two series of observations were collected
over a period 24 h. The measurements of the BOD, DO, water temperature
and flow velocities were recorded at time intervals of 1 h. The stream flow in
this time was about 3 m® s~!, and wetted cross-sectional areas varied from 8 to
10 m?. The average river flow velocities in two cases were 0.34-0.44 m/s. The
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distance [ km ]

Fig. 7. Distribution of BOD and DO downstream of the point of entrance of pollutants

time translation of the traser between stations S; and S; was about 7 h. The
observations recorded at station §; were imposed as the boundary conditions for
transport problems. The following values of parameters were accepted: Ax =
100 m, At = 240 s, E = 0.8 m?s~! and B = 0. The calculations indicated that
the influence of the parameters mentioned above is insignificant. Coefficients K;
and K; have an outstanding influence on the results. Using the trial and error
method the values of these parameters were defined, to obtain better agreement
between computations and observations at control stations §; and S3;. Basing on
data from 29.06.1994 the values of K; =8-107¢ s7! and K, = 7- 108 s~! were
obtained. The results of calculations and observations are presented in Figs. 8
and 9. For the same values of parameters, calculations for a second set of data
from 25.10.1994 were carried out. In this case, as is shown in Figs. 10 and 11,
the agreement obtained is similar to that for the first example. This means that
the parameters K; and K; do not change very much and they are similar in both
summer and autumn. The estimated values of these parameters for the Reda river
conform with those proposed for rivers by others authors (James 1986).

6. Conclusions

The presented method of solving the advective-diffusive transport equations of
BOD and DO in a network of open channels gives satisfactory results. The tech-
nique of splitting the transport equation into two parts enables the advection
equation by the method of characteristics to be solved. The interpolation using
the spline function of third order ensures significant accuracy of solution and re-
quires a calculation effort comperable to the one exigent by the implicit schemes.
The method is absolutely stable and does not require any limitation of time step.
The comparison of the computational results with analytical solutions and real
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Fig. 10. Predicted and observed BOD concentrations at stations S; (a), Sz (b) and S3 (c) on
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Fig. 11. Predicted and observed DO concentrations at stations S (a), Sz (b) and S3 (c) on
25.10.1994
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observation indicates that the proposed method can be useful for environmental
engineers.
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