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Abstract

The paper deals with the problem of time harmonic vibrations of a rigid block on
a water-saturated sand subsoil. The main interest is focused on the phenomenon of
mechanical energy dissipation in the two-phase medium due to the flow of the viscid
fluid through the pores of the solid. The behaviour of the saturated poro-elastic me-
dium is studied on the basis of Biot’s dynamic theory of consolidation. The problem
is solved in a discrete way by using the finite element method. In order to confine the
analysis to a finite domain, artificial boundaries are introduced, on which approxim-
ate absorbing conditions for Biot’s medium are applied. Numerical results, obtained
for three types of the block vibrations, illustrate the distribution of energy dissipation
density in the subsoil. The influence of the frequency of oscillations and the sand
permeability on the energy dissipation is investigated. Some results related to the
problem of wave energy transmission are also presented.

1. Introduction

The problem of vibrations of a rigid block on a half-space of a fluid-filled porous
medium may be regarded as typical in hydro-engineering. This theoretical model .
is commonly used when analysing dynamic behaviour of such structures as: break-
waters, foundations under drilling platforms and oil storage tanks, earth dams,
and other large-scale off-shore objects. In the problems of structure vibrations,
apart from the necessity for determination of displacement and stress fields in the
subsoil under a structure, in a number of cases also the evaluation of damping of
vibrations can be of importance. Particularly in the cases, when the phenomenon
of resonance may occur — either due to the dynamic interaction of a structure
considered with the underlying subsoil itself, or — due to transmission of waves
in the subsoil — with other objects founded in the neighbourhood of a vibrating
structure. The phenomenon of damping in soil is connected with two mechan-
isms. The first consists in transmission of energy from a source of disturbances



72 R. Staroszczyk

into the far field by progressive waves, and takes place in any open-type dynamic
problem. The second mechanism is caused by losses (dissipation) of mechanical
energy in a fluid-saturated soil due to a number of micro-scale phenomena oc-
curring in the medium. From among these phenomena, the following two are the
most significant: irreversible (inelastic) changes in the internal structure (granu-
lar rearrangements) of the soil skeleton, mainly due to its shearing, and viscous
damping, caused by the flow of viscid fluid through the pores of the medium.
The irreversible structural changes in non-cohesive soils lead to its compaction
(pore volume decrease), and in the case of a water-filled sand may give rise to the
phenomenon of pore pressure generation and, in consequence, to its liquefaction.
The theoretical description of the latter phenomena is a complex task (Mor-
land 1993, Morland and Sawicki 1985) and, as yet, the applications of already
developed theories are, as a rule, confined to one-dimensional wave problems,
for instance transverse wave propagation (Sawicki and Morland 1985) or longit-
udinal wave propagation (Morland and Staroszczyk 1995, 1996). The solution of
two-dimensional dynamic problems is possible only after some simplifying assump-
tions have been introduced — an example is the paper by Sawicki and Staroszczyk
(1995), dealing with the problem of sand liquefaction due to the propagation of
Rayleigh surface waves. In order to simplify the analysis of the problems, in which
irreversible changes occur, some attempts to apply soil plasticity theories (Zien-
kiewicz 1982) were undertaken, but they led to ill-posed boundary value problems,
particularly in the case of wave propagation.

In the light of the above it seems that the description of the mechanism of vis-
cous damping due to relative motion of the two constituents of the soil is a simpler
task. This phenomenon can be analysed on the basis of already well established
theories, such as the theory of mixtures (Bowen 1982), or the dynamic theory of
consolidation (Biot 1956). The latter theory, despite a number of significant sim-
plifications, such as that of a constant porosity of the two-phase medium (which
makes impossible the analysis of the soil densification phenomena), enables the
solving of a number of problems of both engineering and theoretical importance.
In Biot’s model the mechanism of damping is connected with the phenomenon
of friction between the pore fluid, treated as a viscid liquid, and the soil skel-
eton in their relative motion. With such a description of damping, the amount of
dissipated mechanical energy depends on a certain damping parameter, being a
function of the soil permeability and an angular frequency of vibrations, and the
relative velocity of both constituents of the medium (i.e. the loss of mechanical
energy does not occur when the pore fluid and skeleton move in unison).

In the present paper, Biot’s model has been applied to analyse the plane
problem of harmonic in time vibrations of a rigid block on a liquid-saturated sand
half-space. Since the problem leads to a mixed boundary-value problem, which
cannot be solved analytically, it is necessary to resort to one of discrete methods.
In this case, however, we have to confine considerations to a finite domain, of only
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a limited number of discrete points. In the open-type problems, in which wave
propagation phenomena occur, such an approach gives rise to additional diffi-
culties, related to the necessity of ensuring undisturbed transmission of energy
from the excited zone to infinity, without introducing disturbances due to reflec-
tion of waves at imaginary boundaries enclosing the region of interest. To this aim
special conditions at the artificial boundaries have to be applied. In the case of
steady-state variations it proved effective to employ the idea of Lysmer and Kuhle-
meyer (1969), who developed approximate absorbing conditions for purely elastic
solids. Extending this idea, the author formulated analogous boundary conditions
for Biot’s two-phase medium (Staroszczyk 1992). Their usefulness in discrete prob-
lems was confirmed by solving Lamb’s steady-state problem and comparing the
results obtained with those evaluated analytically (Staroszczyk 1993, 1992b). The
present work is a continuation of the above papers, but now the interest is focused
on the phenomena related to the loss (dissipation) of energy accompanying wave
propagation in a saturated subsoil due to harmonic motions of a block. On the
basis of a discrete solution to the problem, constructed by the use of the finite
element method, a numerical analysis has been carried out. For three types of the
block vibrations (vertical, horizontal and rocking) the subsoil domains, in which
the greatest losses of mechanical energy occur, have been determined. Next, the
dependence of the energy dissipation on the frequency of oscillations and the soil
permeability has been investigated. In addition, the fluxes of wave energy trans-
mitted from the vibrating block in two directions: horizontal (along the surface of
the subsoil) and vertical (deep into the half-space) have been calculated. These
quantities, in particular the amount of energy transmitted horizontally and being
associated with the propagation of the Rayleigh wave, provide some information
useful in evaluating the influence of a vibrating structure on other object in its
neighbourhood.

2. Formulation of the Problem

The plane problem of motion of a porous elastic medium saturated by a fluid,
occupying the half space z > 0 (Fig. 1), is considered. The motion of the medium
is excited by time-harmonic motions of a rigid and impermeable block. Apart
from the region under the block base (—a < x < a), the free surface of the half-
-space is assumed to be free of stresses. Our objective is to determine dissipation
of mechanical energy in the saturated subsoil that accompanies propagation of
waves in the half-space.
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Fig. 1. Rigid block on a water-saturated porous half-space

In the plane Cartesian co-ordinate system Oxz Biot’s (1956) equations of
motion of the two-phase medium may be written as follows:

2
VZ(Pdivu + QdivU) = 83 5 (pr1diva + py2divU) + bF (fc)—dlv(u U),

VZ(Qdivu + RdivU) = : 7 (p1z2diva + p22divU) — b F (ic)-—dlv(u U), )
NVirotu = & Yy — (p1170t0 + p12rotlU) + bF(:c)——rot(u u),

32
0 = 377 (przrotu + pnrotU) — bF (k) a—tIOt(“ - ),

where P = 2N+ C,t denotes time and V2 is the Laplace differential operator.
In the equations u = [, 0, w]” and U = [U, 0, W]T denote the displacement vec-
tors of the skeleton and the pore fluid, respectively. N, C, Q and R are material
constants of the Biot’s medium. The constitutive relations have the form
gjj = ZNBU' + 5,'j (Cdivu + QdivU), (2)
s = Qdiva + RdivU,

with components of the strain tensor in the soil skeleton defined by
(i j +uj ). A3)

In equations (2) o;; denotes the partial stress tensor in the skeleton, s — the
partial stress in the pore liquid (related to the intrinsic pore fluid pressure p and

€jj =

N =
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the volume porosity n by s = —np), &; is the Kronecker symbol, and i and j take
the values 1, 2, 3.

Four material constants of Biot’s model N, C, Q and R are functions of in-
trinsic elastic moduli of the skeleton, pore water and the medium porosity (Biot
and Willis 1957). Under the assumption, widely applied in soil mechanics, that the
skeleton grains are incompressible, Biot’s moduli can be related to the constants
commonly used in the theory of elasticity as folows:

N = G C = E'w
Q=E,1-n), R=Eyn,

1-25° )

where G is the soil skeleton shear modulus, > is the Poisson ratio, and E,, denotes
the bulk compressibility modulus of water.

The parameters p11, p12 and py, appearing in the motion equations (1), denote
partial densities, which are related to the intrinsic densities p; and p,, of the solid
skeleton and pore fluid, respectively, by means of the formulae

p11 = (1 —n)ps + pa,
P12 = —Pa; (%)
022 = NPw + Pa.

In equation (5) so-called apparent mass coefficient o, appears. This parameter
was introduced by Biot to express the effect of internal coupling of the motion
of both components of the saturated solid. Applying the interpretation given by
Kowalski (1983), this coefficient may be defined by

Pa = NPy -]—.E_ﬁ’ (6)

with B being the ratio of the volume of fluid imprisoned in the skeleton (i.c.
moving together with it) to the total volume of the pore fluid. As the results
of papers by Kubik and Kaczmarck (1988) and Staroszczyk (1992c) showed, the
influence of the internal coupling on the wave propagation is negligibly small
within the range of frequencies encountered in hydroengineering. Thus, in order
to simplify the analysis, we assume B = 0(o, = 0).

The term accounting for the energy dissipation in the saturated porous me-
dium is written in equation (1) as a product of the damping coefficient b and the
function F(«). The parameter b can be expressed in terms of the commonly used
filtration coefficient k; [m/s] as follows

2
Bl fnd (7)

po— 1

kr

where g denotes Earth’s gravitational acceleration. The function F(x) describes
the dependence of internal friction between the skeleton and the pore fiuid on
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the angular frequency of vibrations w [rad/s], and may be written in the following
way (Biot 1956):

1 «2T()
o= oot "
Lo 3/2 3/2
3 —i e (% “k)
T(IC) = W (9)

where Jy and J; are the Bessel functions of the first kind, and i denotes the
imaginary unit. The dimensionless frequency parameter «, following Biot (1956),
is defined as

K = 8(wks/ng)'/?, (10)

where § is a certain dimensionless parameter, depending on the internal geometry
of the pores.

The equation of motion (1) must be supplemented by the conditions at the
boundaries enclosing the finite region. At the free surface z = 0 the boundary
conditions are expressed in terms of prescribed displacements under the block
base and zero stresses beyond the block. These mixed conditions are written
separately for three types of block oscillations:

(a) vertical vibrations with the amplitude wo:

w(x,0,t) = woexp(inwt), |x|<a,
Wx,0,t) = woexp(iwt), |x|<a,

0.:(x,0,8) =0, x| > a, (11)
sz(xvost)__'ov |x|>av
§(x,0,8) =0, x| > a;

(b) horizontal vibrations with the amplitude uq:

u(x,0,t) =ugexp(iot), |x|<a,

0,:(x,0,8) =0, x| > a,
0¥, 0,1) =0, x| > a, (12)
5(x,0,t) =0, x| > a;
(c) rocking vibrations with the angular amplitude «p:
w(x,0,7) = apx exp(iwt), K|<a,
Wx,0,t) = aox exp(iwt), |x| <a,
0,:(x,0,0) =0, x| > a, (13)

ze(x'ovt)zgs le:'a’
s(x,0,2) =0, x| > a.
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Note that for the case of horizontal vibrations we do not require the coup-
ling between the displacements of the block base and the pore fluid, assuming
that there is no relative friction (the fluid is treated as a non-viscid one when
considering its interaction with the block).

In order to construct a numerical model of the wave propagation problem in a
semi-infinite domain, artificial boundaries (rectangle ABCD in Fig. 1), enclosing
all irregular features of the system, are introduced. At these boundaries special
radiation conditions are to be applied to ensure undisturbed flow of wave energy
to infinity. Unfortunately, the construction of perfect transmission conditions is
possible only for a few plane problems. e.g. for the Love shear wave propaga-
tion problem (Lysmer and Waas 1972). In other cases only approximate radiation
conditions can be derived. In the present paper we adopt approximate viscous
boundary conditions, which were firstly formulated by Lysmer and Kuhlemeyer
(1969) for a purely elastic medium. The approach of these authors has been ex-
tended to the fluid-saturated poro-elastic media by Staroszczyk (1992a). The idea
of the viscous boundary conditions consists in supporting the finite region on a
system of infinitesimal viscous dashpots, whose aim is to absorb incoming wave
energy in such a way that the artificial reflection of waves is minimised. Since
we deal with the two-phase medium - two separate sets of dashpots have to be
established at the viscous boundary. The parameters of dashpots depend on the
material properties of the medium, frequency of oscillations and the type of waves
propagating in the subsoil and their effectiveness increases with increasing distance
from the source of disturbances. These parameters can be estimated by solving
the problem of reflection of body waves at a plane viscous boundary at various
angles of incidence, and carrying out averaging procedure in order to find their
optimal values (for details cf. Staroszczyk 1992a). Only in the case of Rayleigh
waves arriving at a vertical boundary is it possible to completely absorb the energy
of incoming waves. As the results presented by Staroszczyk (1993) showed, such
an approach usually leads to errors not exceeding 5%, and thus is fully applicable
for purposes of engineering practice. In accordance with the results of Lysmer
and Kuhlemeyer (1969) and Staroszczyk (1992a) different absorbing conditions
are assumed at the horizontal and vertical region under consideration. Namely,
on the horizontal plane z = h we adopt the conditions which ensure ideal absorp-
tion of one distorsional and two dilatational (fast and slow) waves, propagating
in unbounded saturated porous solid. In turn, at the vertical boundaries |x| =1
the conditions construced for absorbing Rayleigh-type waves are assumed. The
afore-said conditions are written in the following form:
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(a) at the horizontal boundary z = A, |x| <!

oz(x,h,t) = —A(@w(x,h,t),
s ht) = —A(@W,h,t), . (14)
Oer (6, 1) = —As(wulx,h,t);

(b) at the vertical boundaries x| =1,z <h

oux(H,2,t) = A, z,1),
s, zt) = AUz, (15)
o, z,t) = —AR@w(H,z,t);

where the dot denotes differentiation with respect to time. In equations (14)
the quantities A1, A, and A3 are the parameters of viscous dashpots that perfectly
absorb plane body waves arriving normally to the artificial viscous boundary, while
the parameters AR, A¥ and AR, appearing in equations (15), define viscous dashpos
which absorb the Rayleigh surface waves, propagating in the half-space.

3. Energy Dissipation and Transmission
3.1. Instantaneous Energy Dissipation

In Biot’s dynamic theory of consolidation it is assumed that the flow of the viscid
pore fluid relative to the porous skeleton is of the Poiseuille type i.e. we deal
with small Reynolds numbers. Under such an assumption, the microscopic flow
pattern is uniquely determined by the velocity fields of both constituents of the
medium: v — the soil skeleton, and V — the pore liquid. The relative motion of
both soil components with the velocity v — V gives rise to friction forces, whose
work results in the loss of mechanical energy in the medium. The components of
the friction forces, acting on the two constituents in a unit volume of the medium,
are defined by means of so-called dissipation function D, defined by Biot (1956)
as follows: ‘
ab , 3D

= 3_1)." q; = B_VE‘
where g and g/” denote the components of friction forces exerted on the soil
skeleton and the pore fluid, respectively. In the Cartesian co-ordinate system the
dissipation function is written as a homogenecous quadratic form of the skeleton
and fluid velocities:

5

a; i=1,23 (16)

D= %’(v —V)(v-V), (17)

where b = bF (). Calculation of the mechanical power of the friction forces (16)
yields the relation describing the power dissipation in a unit volume of the soil in
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terms of the velocity components as follows:
Ep = b[@ — U)* + (b — W)?]. (18)

3.2. Instantaneous Energy Transmission

The flux of mechanical power per unit area of a single-phase medium is defined
by the following scalar product (Achenbach 1973):

Er =1, (19)

where f is the surface traction vector, v is the particle velocity vector, and real
parts of respective quantities have to be used in calculations. In the case of the
two-phase medium we deal with separate stress and velocity fields related to the
skeleton and the pore liquid, so the total flux of power across a unit area is equal
to the sum of powers transmitted by the both phases of the medium, which is
written by

Er=f a+f U, (20)
where f° denotes the stress acting in the soil skeleton, and f* - that in the pore
fluid. Taking advantage of the Cauchy stress formula, the components of the
vectors f* and f* can be expressed by means of

[ = OkmMk,
ffg=sn!nv k|m:1,2,3,

H

(21)

where n; and n,,, denote the components of a unit vector n, normal to the surface
element. By substituting (21) to (20) we obtain the expression

Er = (oijtii +5sUj)n;. (22)
In the present analysis we confine attention to calculating the power fluxes across
vertical and horizontal boundaries, for which formula (22) yields the relations:

(a) for a vertical boundary — transmission of energy in the horizontal direction,
along the ground free surface

ETH = Oxxll + 03, W +SU. (23)
(b) for a horizontal boundary - transmission of energy in the vertical direction
ETV = azzw + O'le.l + 5 W. (24)

The total power of external forces, which is transmitted from the vibrating block
across the contact region (z =0, —a <x <a) into the half-space, is defined by
the relation

Ey = (Fywo + Fruo + Mag)iw exp(iwt), (25)
where Fy, Fy and M denote the forces exerted by the block on the half-space: Fy
and Fy are vertical and horizontal reactions, respectively, and M is the turning
moment.
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3.3. Time-averaged Energy Dissipation and Transmission

All parameters related to the power dissipation and transmission, described by
equations (18) and (23) - (25), are instantaneous quantities, changing cyclically
with the angular frequency w. In order to compare the amount of energy either
dissipated in the region or transmitted through its boundaries, with the energy put
into the system, it is convenient to deal with quantities averaged over one period
of oscillations T, i.e. to calculate the mean values of respective integrals:

t+T

1
(E) = 7 f Edt, (26)
t

where E is one of the parameters from among Ep, ETn, Ery and Ep, defined
by (18), (23), (24) and (25), respectively, and (.) denotes the quantity averaged
over the period T. It can be seen that all quantitics related to the mechanical
power have the form of sums of products of real parts of two complex-valued
parameters, each of them varying cyclically with the frequency w (i.e. they are
multiplied by the same factor ¢/%*). Denoting the first and the second factor of
these products by X and Y, where

X =Xpexp(iot), Y =Yoexp(iowt), (27)

with Xj and ¥; being complex amplitudes of respective parameters, one can easily
derive the following formula, useful when calculating time-averaged power fluxes:

1 1
(E) = (Re(X) - Re(Y)) = iRc(XY") = ERe(XgYE{), (28)

where Re(.) denotes the real part of a complex number, and (.)* stands for the
complex conjugate. By making use of (28), we can express the time-averaged
quantities, defined by equations (18) and (23) - (25), as follows:

— the mean power dissipation density

A .
(Ep) = 3b (1 = U+ 1w — WP), (29)
— the mean power transmission density in the horizontal direction
1 ] : ;
(Etg) = ERc(anu* + o w* +5UY), (30)

- the mean power transmission density in the vertical direction

(ETy) = %Rc(o}.zw* + oy tt™ + SW*)» (31)
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— the mean total exciting power (due to external forces) put into the half-space
1
(Eo) = ia)Im(FVwO + Fyuo + May), (32)

with Im (.) denoting the imaginary part of a complex number.

Having determined the time-averaged power densities (29) — (31), we can now
evaluate the total power dissipated inside the region of interest as well as that
transmitted across its boundaries. To this aim we calculate surface (for power
dissipation) or line (for power transmission) integrals of respective functions. By
comparing quantities so obtained with the mean total power (32) put into the
subsoil, we can define some dimensionless parameters, which describe concisely
the features of the dynamic system considered:

— energy dissipation ratio in a finite domain

_ (fQ EpdQ)

= "E b

— energy transmission ratio in the horizontal direction (i.e. across the bound-
aries AB and CD in Fig. 1)

([g ErndS)
Cray = 2", 34
TH (Fo) (34)
— energy transmission ratio in the vertical direction (i.e. across the boundary
BC in Fig. 1)
_ {[s ErvdS)
Cry = TN (35)

In an idealised case of a steady-state problem (in which both kinetic and
clastic energies averaged over a period of oscillations T do not change) the fol-
lowing relation, expressing the energy conservation principle, should hold for any
rectangular domain |x| > a,z > 0:

Cp+Cru+Cry=1. (36)

However, due to the imperfect character of adopted absorbing conditions, ad-
mitting some, though very limited, reflection of waves at the artificial boundaries,
some discrepancies from this idealised situation may occur in the numerical model
of the problem. As the results of calculations have shown, this “gap” in energy
balance does not usually exceed 2% of the total energy put into the vibrating
system, and can be reduced to some extent by increasing the dimensions of the
finite domain taken for numerical computations.



82 R. Staroszczyk

4. Discrete Solution to the Problem

The mixed boundary-value problem, defined by the equations of motion (1) and
the boundary conditions (11) to (15), is solved approximately by applying the
finite element method. The rectangular continuous domain ABCD (see Fig. 1)
is replaced by a discrete system consisting of rectangular finite elements; the
clements of four nodes, with four degrees of freedom per node (Fig. 2), are used.

Lo A ol¢ A o
I G g
O— <r
i J
Q
.
Q
/ zvm
) k“ uk'-Ui'

Fig. 2. Rectangular finite element

The discretization process transforms the problem to the solution of the set
of linear equations in the form:

(—0*M +iwC + K)q =F, (37)

where M, C and K are, respectively, the system mass, damping and stiffness
matrices, q is the vector of nodal displacement amplidutes and F is the vec-
tor of nodal external forces. The system matrices and vectors can be assembled
from the respective element matrices and vectors in a standard typical for the
FEM, manner. The element matrices can be derived by applying either the prin-
ciple of virtual work or the Galerkin (residual weighted) method (cf. Zienkiewicz
and Taylor 1989). As regards Biot’s medium, details can be found in the paper
(Staroszczyk 1993); here, for reference, we quote in brief the most important
results, relevant to the present analysis.
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Assuming the linear variation of the displacements v, w, U and W within the
finite elements, interpolation (shape) functions can be expressed as follows:

1 .
M’ = Z(1+Er5)(1+nrﬂ). r=i, ]'k'l! (38)
where, for convenience, normalised co-ordinates & and n are introduced
E=x/A, n=1z/B, (39)

and (&, n,) = (£1, £1) are the co-ordinates of the element nodes in the local
co-ordinate system 0fn. The stiffness, damping and mass matrices of the finite
element considered are 16 by 16 matrices, and each of them is made up of sixteen
4 by 4 submatrices. The element stiffness matrix k® has the form:

ki kij ki ki
i 157 k. 5
= k.i k.U Nk kﬂ ' ( 40)
ki ki ke ku
ki ki kg ku

where each of the component submatrices is defined by
PIi+Gly CI;+GhLi QI QI
Chy+Gl; PI;+GIy QO QI

ks = , (41)
ory orn; RI;, RI;
or; o, RL; RI;
with -y E
rs _ Sr&s O Nr s rs _ Srlls
=g (1+75). m=
# nrés . nens A & & ., . (42)
I£1=T, I£2=T§(1+ 3), B =i, LKL
The element damping matrix ¢¢ consists of sixteen submatrices given by
Cr_; =BIESHr r,§ = i!j’klll (43)
where AB .
P T L) Nr s
0—4(1+ 3)(1+ 3) (44
and
1 0 -1 0
0 1 0 -1
il AR RN i
0 -1 0 1
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And finally, the element mass matrix m® is composed of 4 by 4 submatrices of the
form

my, = I’r, r,s=ij,kl, (46)

where r is the matrix of partial densities

pnu 0 p2 O
0 puu 0 p2
. 47
piz 0 pn 0 £R
0 p2 0 pn

5. Numerical Examples

In order to decrease a number of discrete points of the model we take advantage
of the feature of symmetry or asymmetry of the problem (depending on the type
of block vibrations) with respect to z-axis, which allows to confine considerations
to the region OABE in Fig. 1. The basic model used in numerical computations
consisted of 900 rectangular elements (30 elements in both horizontal and vertical
directions) and had 3844 degrees of freedom. For each frequency of vibrations
the absorbing boundaries were assumed to be at a distance of one Rayleigh wave
length from the origin of the co-ordinate system, i.e. A =/ = L, the maximum
finite element side not exceeding 1/10 of the surface wave length L.

The values of material parameters used in numerical analysis are listed in
Table 1. These data pertain to a water-saturated coarse sand and correspond to the
following Biot’s model parameters: N = 3.75 x 10° Pa, C =2.82 x 10° Pa, 0 =
1.38 x 10° Pa, R=9.2 x 108 Pa, p;; = 1.59 x 10° kg/m?, p;2 =0, p2 = 4 x 10?
kg/m?, b = 1.57 x 10° Ns/m*, and §2 = 8 in equation (10).

Table 1. Values of physical parameters used in numerical calculations

parameter notation magnitude
skeleton density Os 2.65 x 10° kg/m®
water density Ouw 10° kg/m3
porosity n 0.4
skeleton shear modulus G 3.75 x 108 Pa
water bulk compressibility modulus E, 23 x10° Pa
Poisson’s ratio E) 0.333
filtration coefficient ky 102 m/s

In the computations the block base half-width is a = 10 m, and a dimensionless
frequency parameter @ has been used:

d =ka, (48)
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where k = w/V; is the wave number of a distorsional wave, propagating with the
phase velocity ¥; (for the data used in calculations V; = 434.1 m/s).

As the first example, in Figs 3 to 5 we present the distribution of the power
dissipation densities in the subsoil in the vicinity of the vibrating block. For three
kinds of vibrations (vertical, horizontal and rocking ones) at the dimensionless
frequency ka = 1.0 (@ = 43.41 rad/s) the contour plots of the time-averaged power
dissipation densities within the rectangular domain 0 <x <3a, 0 <z <2a are
shown. For illustrative purposes, the quantities discussed are presented in the
normalised form:

T (ED) 2

Ep (Eo) L5, (49)
where Ep is defined by equation (29). As can be seen from the figures, the
qualitative pictures of the energy dissipation in the subsoil due to vertical (Fig.
3) and horizontal (Fig. 4) vibrations of the block exhibit considerable similarity.
The greatest losses of mechanical energy occur just under the free surface of
the half-space, in the neighbourhood of the block edge (for x ~ 1.35a). In this
domain the relative velocities between the soil skeleton and the pore water reach
the greatest magnitudes. Directly under the block base these relative velocities
are much smaller, particularly for vertical oscillations — in this case the motion
of a rigid and impermeable block compels the soil skeleton and the pore water
to move together (cf. equation (11)). In the case of horizontal vibrations such an
influence of the block on the underlying subsoil is smaller — only the soil skeleton
is forced to move together with the block base at the contact zone, which results
in a relatively greater energy dissipation directly under the structure for this type
of oscillations. A different energy dissipation pattern can be observed in the case
of rocking vibrations (Fig. 5). Now two regions of high energy dissipation occur.
The first is situated similarly to the foregoing cases of vertical and horizontal
oscillations, i.e. under the subsoil free surface near the block edge, but this time
the power dissipation density is much higher than in the two previous cases. The
second domain of high energy dissipation occurs directly under the block base, and
is due to high horizontal velocities of the pore water in this region. The existence
of two domains of high energy dissipation in the latter case is the reason why of the
three kinds of block vibrations the highest energy loss in the subsoil (expressed in
terms of the dimensionless coefficient c p) occurs in the case of rocking vibrations.

The results displayed in Figs 3 to 5 concern the region0 <x <3a,0<z < 2a,
It may be of interest to investigate how the amount of energy dissipated in a region
and the relations between the energy transmitted across its boundaries depend on
the domain dimensions. The results of such an analysis, carried out for three kinds
of the block oscillations at frequency ka = 1.0, are shown in Fig. 6. In the analysis it
has been assumed that the region considered has the shape of a square (i.e.h =1 -
see Fig. 1), and for various ratios of the square side 4 to the Rayleigh wave length L
dimensionless energy dissipation and transmission ratios have been evaluated. As
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follows from the results plotted, the highest energy loss accompanies the rocking
vibrations of the block, and the least — the horizontal ones. Depending on the type
of vibrations, the relation between the amounts of energy transmitted in both
directions changes significantly. In the case of vertical and rocking oscillations
over 60% of the total energy, introduced by a vibrating block, is radiated away
from the region L x L in the horizontal direction by the surface waves, while the
respective quantities concerning the vertical transmission do not exceed 20% for
the vertical oscillations and 6% for the rocking ones. In the case of the block
horizontal motions we deal with quite a different situation, in which the majority
of energy (almost 60%) is radiated in the vertical direction — deep into the half-
-space, and only about 20% is transmitted by the waves propagating along the
free surface of the subsoil. This means that in the case of vertical motions of the
block the influence of the object on its neighbourhood is much smaller than in
the cases of the two remaining kinds of block oscillations.
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Fig. 3. Power dissipation density distribution in the subsoil - vertical vibrations of the block

In Fig. 7 the influence of the block vibrations frequency on the parameters
describing the energy dissipation and transmission is illustrated. For a wide range
of dimensionless frequencies 0.1 < ka < 2.0 the values of the coefficients cp, cry
and cry for the square domain L x L(jx| < L, |z| < L, L is the Rayleigh wave
length) have been evaluated. It follows from the plots that the greatest frequency
sensitivity of the ratios considered cp, cry and cry are exhibited in the case of
rocking motions of the block, particularly for low frequencies. For this type of os-
cillations the energy dissipation decreases and the horizontal energy transmission
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Fig. 4. Power dissipation density distribution in the subsoil — horizontal vibrations of the block
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Fig. 5. Power dissipation density distribution in the subsoil - rocking vibrations of the block
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Fig. 6. Energy dissipation and transmission ratios as functions of a square domain dimensions

energy ralios ¢, Cry  Cpy

energy ratios €p, Sy« Cpp

“p “mur + v

encrgy ratios

R. Staroszczyk

vertical vibrations
08 I ; I
06 g /’ ,/ -—-_.:
2 -7 ———  dissipation
. 7
4 N, o ] o
04 ! o T horizontal transmission
e yertical fransmission
02
0.0 | :
0.2 0.4 0.6 0.8 1.0
horizontal vibrations
0.8 ; | |
06 ]
\\ i paismmiran B ittt S
\\ . » ases?
\\\ it
L )
0.2 _//’//
0.0 ] . :
0.2 0.4 06 08 Lo
rocking vibrations
0.8 ; ! |
06 | I
\\\_‘_‘ ‘—___,.-”
0.0 | | : 1
g2 0.4 0.6 08 14

dimensionless length A/L



Energy Dissipation in a Saturated ... 89

0.8 { 3 T T
i Y
£ ¥ ——— vertical vibrations
b
° \" - - -
g 06 - VR horizontal vibrations
e 04 N
lﬁ -."'0. V=
-w - o —
k] BN
5
0.0 ' : :
0.0 0.5 1.0 15 20
0.8
_— T T |
&
-8 \_
8§ o5l s -
8
.g g
g 04 § .-'J!: ]
A
3= “'""71!’:—‘. _____
.Ea o A e —— .
3
£ |/
2 7
0.0 L ' '
0.0 05 10 15 20
08 T I I
B
Q .
|° 0 ‘
Q98 = i e
=]
2
W ¥
7] .
E 04 — ]
T 02 - -
-,E i
5 R S
0o L—— '
0.0 0.5 10 15 2.0

dimensionless frequency ka

Fig. 7. Dependence of the energy dissipation and transmission ratios on the frequency of the

block motions




90 7 Staroszczyk

increases as the frequency parameter grows, while the vertical energy transmission
ratio can be regarded as being approximately constant over the whole frequency
range analysed. In the case of two remaining forms of the block motions the en-
ergy ratios are much less sensitive to frequency. It can be seen that all the plots
related to vertical and horizontal block vibrations have almost a linear charac-
ter, with energy dissipation slightly increasing and energy horizontal transmission
slightly decreasing for growing values of the frequency parameter ka. As concerns
the ratio of energy transmission in the vertical direction, there is again practically
no change in the respective values over the whole range of frequency parameters
considered.
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Fig. 8. Dependence of the energy dissipation and transmission ratios on the sand filtration
coefficient

And finally, the influence of the soil permeability on the amount of energy
dissipated in the subsoil has been investigated. In Fig. 8 the plots of the energy
dissipation ratio cp, calculated for the domain L x L and the frequency ka = 1.0,
as a function of the soil filtration coefficient ky, are presented. The analysed range
of the coefficient ks corresponds to soils from a very fine sand (kf ~ 10~ m/s) to a
coarse gravel (ky ~ 10~! m/s). As is seen, for each type of the block oscillations the
amount of dissipated energy increases with growing permeability of the soil, except
in the case of very large values of the filtration coefficient ky = 0.1 m/s (which is
rather a theoretical possibility, as soils of such high permeability practically do not
exist). Generally, for the values of kr > 10~% m/s the greatest energy dissipation in
the subsoil occurs in the case of rocking vibrations of the block, and for ky ~ 1073
m/s the energy losses are over twice as high as for the remaining two types of block
motions. On the other hand, one can observe that for soils of low permeability
the energy dissipation ratio cp rapidly approaches zero: e.g. for kf = 10~° m/s



Energy Dissipation in a Saturated ... 91

only about 0.5% of the mechanical energy is dissipated in the domain L x L. This
means that in wave propagation problems low permeable sands can be treated as
non-dissipative media.

6. Conclusions

In the paper the phenomenon of mechanical energy dissipation, accompanying
wave propagation phenomena in fluid-filled porous media, has been studied. With
this aim, the problem of vibrations of a rigid block on a water-saturated sand half-
-space has been solved. On the basis of a discrete model of the problem, construc-
ted by using the finite element method, an analysis aiming at the determination of
the energy dissipation density distribution in the subsoil, as well as the influence
of vibrations frequency and soil permeability has been carried out. In addition,
parameters describing the transmission of energy in the subsoil have been determ-
ined. Three types of block motions have been considered and it has been found
that the greatest energy loss accompanies the rocking vibrations, and the least —
horizontal ones. The greatest energy dissipation in the saturated subsoil occurs,
independent of the kind of vibrations, under the free surface of the medium in
the vicinity of the block edge. In the case of rocking vibrations another domain
of high dissipation, situated under the block base, also occurs. Next, it has been
found that the greatest frequency sensitiveness takes place in the case of rocking
vibrations, particularly in the low frequency range, while in the case of vertical and
horizontal motion of the block the influence of frequency is relatively small. And
finally, it has been observed that the energy dissipation in the subsoil increases
with the increase of the soil permeability. The results obtained, concerning the
mechanical energy dissipation and transmission in water-saturated sands, provide
some information, both theoretical and practical, which can be useful in the as-
sessment of the influence of a vibrating structure on the subsoil and other objects
in its neighbourhood.
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