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Abstract

In the paper, the generation of non-linear waves with moderate amplitude in water of
finite depth is investigated. The surface waves are described by means of the Stokes’
approximation up to the second order of expansion. The solution discussed is based
on the description model given by Wilde and Romanczyk (1989) in which, the random
Stokes’ type wave with two components has slow varying phase and amplitude in time.
The problem considered is solved in two steps. In the first, the linear component of
the wave is obtained as the output of the linear time invariant system induced by
a sample function of the stochastic process describing the wavemaker velocity. Then,
in the second step, a supplementary solution is created. The latter corresponds to
the double frequency of the wavemaker and expresses the second component of the
Stokes’ wave. Comparison of the theoretical solution obtained with experimental data
shows that the model proposed leads to results of practically acceptable accuracy. .

1. Introduction

In the analysis of water waves a basic solution is obtained within the linear theory
of potential motion supplied with linear boundary conditions at the free surface
of the fluid. An example of such a case is the linear solution to the problem of
harmonic generation of long waves of small amplitude in a hydraulic flume. The
linear theory applied for this case provides results which fit experimental data
fairly well. There are also regions of our interest however, where the waves gen-
crated are of relatively considerable heights and thus a more advanced theory is
needed for their description. A useful method of solving the latter problem is,
to some extent, the perturbation method in which the solution is expressed in
the form of a series in powers of small parameter. Such a method of solution of
the two-dimensional problem of generation of water waves in a hydraulic flume
was given by Hudspeth and Sulisz (1991). These authors developed a complete

1A part of this work was presented at the XI-th Conf. on Fluid Mechanics held at the Military
University of Technology, Warsaw, 1994,
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second-order solution to the aforementioned problem. In cases where the free
surface elevation is measured far enough from the wavemaker it is possible to de-
scribe the surface wave by means of the Stokes’ approximation in which the wave
profile consists of harmonic components corresponding to multiple of the wave
basic frequency. The amplitudes of the successive components of the Stokes’ wave
are monotone decreasing and thus, in practical applications, it is often reasonable
to confine our attention to some of the lowest components of the wave. Since
the Stokes’ wave is a periodic wave propagating in an infinite fluid domain, it
does not satisfy the boundary condition at the wavemaker in general. Therefore,
when applying the Stokes’ approximation to the description of waves generated
in a flume, additional free waves, which are not components of the Stokes wave,
should be taken into account. This problem was discussed by Bendykowska (1980)
and Massel (1982). For harmonic generation of water waves in a flume, the au-
thors assumed three components in the description of the free surface elevation.
The lowest two components corresponding to the wavemaker frequency and its
doubling propagate with the same velocity. The third component, associated with
the double frequency of the wavemaker, propagates with its own velocity which
differs from the previous ones. The approximate description discussed, enables us
to find the Stokes’ type wave (its two components) in measurements in a hydraulic
flume and then to calculate the additional free wave.

Another approach to the problem of description of waves generated in a
hydraulic flume was presented by Wilde and Romanczyk (1989). These authors
assumed that the generated wave is random in nature and may be described by
the random Stokes’ type wave with phase and amplitude slowly varying in time.
The main goal of the paper was to decompose the measurements into the Stokes’
type wave and the free wave propagating in the flume. To save space we shall
refer to this paper using the abbreviation W-R.

The aim of the present paper is to construct an approximate solution to the
problem of generation of random waves with moderate amplitudes in water of con-
stant depth. In the method considered, the waves are generated by a piston-type
wavemaker placed at the beginning of a semi-infinite layer of fluid. The surface
waves are measured at points a considerable distance from the wavemaker and
thus, only progressive waves are taken into account. Following the mathematical
model developed in W-R (1989), the problem in question is reduced to the trans-
formation of a narrow-band stochastic process describing the generator motion
into the stochastic process of the free surface elevation. Generally speaking this
transformation is a non-linear one. In our approach however, it is assumed that the
generated wave may be properly described by means of a two component Stokes’
type wave. The first linear component of the wave is obtained by means of direct
linear transformation of the generator motion process. The second, non-linear
component of the solution, is obtained indirectly, with the help of the first com-
ponent given. The linear transformation of the stochastic processes considered
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is based on the impulse response function for the generator-fluid system. With
this function, the free surface elevation is calculated as the output of the linear
generator-fluid system forced by the sample of the generator motion process as-
sumed. The main goal of the investigations is to check accuracy of the model
considered by means of comparison of its results with data obtained in experi-
ments.

2. The Stokes’ Type Wave with Two Components

Let us consider an infinite layer of fluid of depth 4 and the rectangular co-ordinate
system Oxz with —oo <x < o0, —h <z <n. It is assumed that a Stokes’ wave
of rigid profile propagates through the layer from the left, into the right side
of the layer (in the direction of positive values of x). To the second order of
approximation, the free surface elevation of this wave is expressed as follows
(Druet 1978):

H ; 1H?
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nx,t) Re[ze +4hV€ (1)
where H is the wave height, o is the dominant frequency of the wave, k is the
wave number, i is the imaginary unit, and
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The dispersion relation for the wave is the same as in the case of linear solution
and is given by the formula:

0% = kg tgh(kh) 3

where g is the gravitational acceleration.

According to the Stokes’ perturbation method, the second, non-linear term in
H which enters the solution (1), must be small compared to the first-linear term.
In laboratory experiments, the free surface elevation was measured at a chosen
point and thus, without loss of generality, we may assume x = 0, and write:

H _; 1 H? ;
nt) = Re I:?e‘“” =+ ZTJ/E_?JU[} p (4)

Following the generalization given by W-R (1989), it is assumed that the Stokes’
wave has an amplitude and phase shift slowly varying in time and thus, instead of
Eq. (4) we will consider the expression:

n(t) = Re [C(t)e"'”‘ + %Cz(t)e‘z"‘”jl 5)
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where:
C@)=A@)+iB@) (6)

is a complex function.

From this substitution it can be seen that the absolute value of C(¢) describes
the amplitude of the basic wave generated. As regards the description given in
W-R (1989), functions A(¢) and B(¢) in the equation are assumed to be two inde-
pendent stationary gaussian processes without dominant frequencies. Moreover,
the processes are assumed to have zero means and the same correlation functions.
All details associated with processes A(f) and B(¢) i.e., their derivation, proper-
ties, differentiability etc., may be found in the book by Wilde and Kozakiewicz
(1993) hereinafter referred to as W-K. For further purposes it is convenient to
introduce the following notation:

Z(t) =Ctye™" = X(t) +iY(t) (7)

where:
X(@t) = A(t) cos(ot) + B(t) sin(ot),

8
Y(t) = —A(t)sin(ot) + B(t) cos(ot). ®)

According to the characteristic features of processes A(t) and B(¢), the resulting
processes X(t) and Y(¢) are also stationary gaussian processes with zero means.
Substituting the latter equations into Eq. (5) we arrive at the following formula:

1) = X() + T1X°0) - Y )

The formulation of the problem considered enables us to decompose the meas-
urements in a hydraulic flume into components corresponding to the dominant
frequency and its doubling, respectively. This will be performed by means of the
Kalman filter method (see W-K (1993)) and the related system of computer pro-
grams prepared by Wilde (1992).

3. Laboratory Experiments

In order to investigate the accuracy of the approximate description presented so
far, laboratory experiments in a hydraulic flume were carried out. These experi-
ments consisted in the generation of random waves with moderate heights in the
flume by a piston-type wavemaker. The scheme of the wave generation system is
shown in Fig. 1.

The experiments were performed at the Polish Academy of Sciences Institute
of Hydro-Engineering in Gdarisk. The 0.50 m wide hydraulic flume was filled with
water up to 0.60 m. The water waves were generated by a programmable piston-
type wavemaker. In the experiments, the motion of the generator (the horizontal
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Fig. 1. Definition sketch for the generator-fluid system

displacements of the rigid wall OA in Fig. 1) was imposed in the form of the
stationary gaussian process:

X, (t) = Ag(t) cos(ot) + B, (1) sin(ot) (10)

where, as in the previous section, A (¢) and B, (¢) were stationary gaussian pro-
cesses with zero means and the same correlation functions. The dominant fre-
quency o of the generator was equal to 2. All the stochastic processes considered
were substituted by discrete parameter processes i.e., by sequences of random
numbers corresponding to the discrete time steps: t, =nAt,n =0,1,2,..., N.In
this way a sample function of the proces (10) was expressed in the form of a finite
sequence of numbers. The latter were calculated before experiments by means of
methods outlined in W-K (1993).

The random sequence generated was then used as the displacement history
input for the steering system of the wavemaker. Besides, the displacements of the
generator were measured by an additional inductive gauge and recorded by the
computer system. With the help of the displacement record it was a simple task
to calculate the time history of the wavemaker velocity. A sample of this velocity
record is shown in Fig. 2.

The surface wave generated in this way was measured at a distance of
x =4.78 m from the wavemaker by means of a wave gauge. The record of the
free surface elevation corresponding to the excitation history shown in Fig. 2. is
presented in Fig. 3 (A). The latter was then processed by means of a Kalman filter
providing components corresponding to the dominant frequency and its doubling,
respectively.
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Fig. 2. Sample function of the generator motion process

In light of the above, the components in Figs. 3 (B, C) correspond to the
relevant components of the Stokes’ wave. It can be seen from the plots that the
amplitude of the second component of the wave is, as it should be, smaller than
the amplitude of the first component. To get a better insight into the results of
experiments, part of the free surface elevation together with its two components is
shown in Fig. 3 (E). From the plots it is seen that there is no phase shift between
the first and the second component of the wave. A similar result was obtained for
the wave measured at a distance of 10.83 m from the wavemaker. Therefore, for
the case of random wave generated in the hydraulic flume discussed no free wave
was detected in the experiments performed.

4. Approximate Solution to the Problem of Generation of the Stokes’
Type Wave

Knowing the sample function describing the generator velocity shown in Fig. 2, it
is possible to calculate the first linear component of the surface wave (8). This may
be done by means of the impulse response function 4(t) of the system mentioned.
Thus, let us consider now the linear problem of potential motion of incompressible
inviscid fluid. For the assumed unit impulse of velocity of the wall OA (Fig. 1),
the relevant free surface elevation is given by the formula (for details see Szmidt
1993, 1994):

o0

1 [ tgh(sh) 4 [sin(t) & sin® geh*
h(t) = ;f = cos(sx —rt)ds + ;/ = Z; 2+ sin(Zﬁj)dd' (11)
0 0 =

where

2h
o? =r? =gstgh(sh), B =kih, a? =—fitgB), j=12.... (12

The first term of the solution (11) describes the propagating wave and the
second one corresponds to a standing wave which dies out when going to infinity
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(x — 00). From numerical analysis performed in Szmidt (1994) it follows that
within the limit ¢ — 0", x > 0, the following relation holds:

4 [sinot [& sin® B;e %%
lim — > s do =
t—0+ 7T o = 2B; + sin2p;

1 [ tghsh 1 X
=— = —In|ctgh{ — ) |.
:r[ 5 cossxds - n[cg (411)] (13)
0

Besides, for large values of x (§ > 2) and sufficiently large ¢ (¢ means elapse
of time measured from the starting point), the influence of the second integral in
Eq. (11) on the final result is negligible, and thus the response function may be

assumed in the form:

ht) = %]tghsih)cos(sx —rt)ds. (14)
0

The function (11) is expressed in the form of improper integrals. In order to
find values of the function for a chosen sequence of the time steps (x > 0,¢ =
nAt,n =0,1,2,...) it is necessary to resort to approximate numerical integration.
The impulse response function obtained in this way is shown in Fig. 4.
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Fig. 4. Impulse response function for the generator-fluid system

It is seen that the function rapidly oscillates and diminishes in absolute value
with the passage of time. The frequency of the oscillations grows with the passage
of time. To investigate behaviour of the function for large values of time, the
method of stationary phase was applied (Achenbach 1973). One can show, that
for large time, the impulse response function may be approximated by the formula:

2 [4x . (gt* =
=== e 0. 15
h(®) JTVgtz Sm(4x + 4) L> (13)
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By virtue of this result, the amplitude of the function decreases as 1/¢ for
t — oo, while the angular frequency of vibrations increases with time:

t
ahz%, x>0, t - oo (16)
Knowledge of the time history of the wavemaker velocity and of the impulse
response function, enables us to find the linear part of the free surface elevation:

t
n(x = const, 1) = X(t) = f x (t — h(t)dr, (17)
0

where for ¢t < 0, the generator-fluid system is at rest.

In laboratory experiments, the velocity of the generator, as well as the free
surface elevation measured, are both expressed in the form of finite sequences
of numbers corresponding to the chosen time step Af > 0. Similarly, in numer-
ical computations, the impulse response function is expressed in the form of a
sequence of numbers with its own time step. Therefore, in order to calculate the
latter integral, it is necessary to use approximate numerical integration. The as-
sumed time step of the integration must satisfy the Nyquist condition (Otnes and
Enochson 1979):

4
At < Son (18)
where o, is the maximum frequency observable.

The last condition is especially important for large values of time (¢t > 0)
when the frequency o, of the impulse response function may exceed the Nyquist

frequency, ie.:
b4

= (19)

On inserting Eq. (16) into condition (18) and making simple manipulations
we arrive at the following inequality:

Oy > ON=

8mx
<

tmax < P, (20)

which is stronger than the previous one.

The last formula derived defines the maximum value of time which is allowed
to be used in numerical computations. In cases when the observation time (the
length of records describing the time history of the generator motion and the
free surface elevation) is greater than the value (20), we have to consider some
additional modifications in calculating the integral (17). The first possibility is to
choose a smaller time step At in such a way that the condition (20) should be
satisfied. In this case one may expect a longer time of computer calculations.
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Besides, it may happen that the length of experimental records (the number of
points in one record) must be limited for technical reasons. Therefore, it is more
promising to change the impulse response function so that the integration (17)
may be performed in a finite range of time not depending directly on the length
of the records. In other words, an appreciable contribution to the integral comes
from the interval (0 = t), where t < tna.. The latter approach to the problem rests
on the observation that for large ¢ the impulse response function oscillates very
rapidly with a self-cancelling effect on the integral. Accordingly, instead of the
original function A(t) we may use weighted values of it, which are obtained by
means of digital filtering (see Otnes and Enochson 1979). As regards the above,
let us consider now the recursive low-pass digital filter of the second order:

yi =2a-yi—1—az-yf_z-!-(l—a)z-xi (21)

where x; = h(iAt) and 0 < a < 1.

For the sequence of numbers x;(i =0, 1,2...) representing the impulse re-
sponse function h(#) and chosen value of e it is a simple task to calculate the new
sequence of numbers y; (i =0, 1, 2...). The latter represents the new filtered func-
tion A(¢) which differs from the previous one. Since the filter (21) is the low-pass
one, the amplitudes of the impulse response function A(¢) for large values of time
are much smaller than those of the original function. In this way, amplitudes of
the tail of 4(¢) may be compressed to arbitrary small values. On the other hand, it
is desirable for the new function to be as close as possible to the original function
within the range time: 0 < ¢ < fma. To learn more about the filter mentioned, let
us calculate its complex frequency response function. Simple manipulations give:

(1—a)?

H(o) = ;
(@) 1 —2aexp(io At) + o exp(2io At) &)
The absolute value of Eq. (22) calculated at o = 0 is:
(1—a)
H(o)= —= = 24
H(o)H" (o) d—a) (23)
where H* is the complex conjugate of H.
In the limit 0 — oy, the following relation holds:
1—a\*
lim H(e)H*(o) = . 24
U—IIEN (0) (0') (1 +O€) ( )
The formula obtained allows us to assume a desirable level of “damping”:
B = H(on)H*(on) K 1 (25)
and then to calculate the relevant value of
1 — 4
o= VB (26)

1+ B
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In order to illustrate the considerations, numerical computations were made.
The computations were performed for the assumed g = 0.0001. Some of the nu-
merical results obtained are shown in Fig. 5 where the plots of () and h*(¢) are
depicted.

~ — (b
Vi
030 I / A
= A = — = W
020 == A | £, i o ;
& i Fii U { i % :\ n
\ ey X [T W 7 i I3 A
i frla B wN b da dk B AA;
010 './‘ 1 ! "" [ Y i) ‘\|“ Lt “!"v I [ R i
y i } \ . fa yo '| ol R P RS A i.. 1 R
B o O GO O I B R R
0.00 —_—t \ Lo n v W d5 oA L [ Nl U \.f‘\,l"\w‘,
b Voo A T \\ proLE T G e e e e Gapsl,
= ; : 0o . ' o vl i Y
Y, 1 o RTINS O 1T
6 — \ ! Lo e o Vot ! (R i b o 1 ¥
Z 4 h [ oy [ N \‘.'_ i VF ¥ v W W v
=] v i \ \h vk e agt g g B
i \e \ ! + \ \/ X
. [ L4 A
\ ¥
030 i t [sec)
T T T T T
ooo 200 4.00 6.00 8.co 10.00 1200

Fig. 5. Impulse response function A(t) and its picture h*(t) after filtration

It can be seen that the filter applied has changed both the amplitude and
phase of A(¢). The phase shift between h(t) and h*(¢) is relatively small and
may be assumed as independent in time. For the discussed case of laboratory
experiments (x = 4.78 m and At = 0.025 s) condition (20) gives:

fmax < 97.969 s. (27)

The range of time (27) is large enough and thus, with respect to the behaviour
of h(t) for t > tmax (the function is small in absolute value and rapidly oscillating),
it is justified to use the ideal low-pass rectangular filter:

hit) for 0 <t < tpax
waoy=] " 2V i (29)
0 for t > tmax.

Accordingly, in calculating the integral (17) the shift in time of the integrand
functions does not exceed the maximum time allowed by (27). Therefore, in light
of the substitution (28), the maximum time allowed is called the memory time of
the system mentioned. The last assumption may be supported by observation of
a physical situation of generation of water waves in a hydraulic flume. In reality,
the dissipation of energy due to viscous forces occurs of necessity and thus, the
duration of fluid vibration forced by impulse of the generator velocity may be
assumed to be finite. From theoretical point of view the memory time is infinite,
but the explanations presented above justify the assumptions introduced, which
in turn, allow us to use the aforementioned ideal low-pass rectangular filter.
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5. Comparison Between Theory and Experiment

For the purpose of verifying the computational model presented above, numerical
calculations were made. The calculations correspond directly to the experiments
performed in the hydraulic flume, therefore the wavemaker velocity entering the
integrand in Eq. (17) was taken from the experiments (see Fig. 2). The numerical
calculations of the integral (17) were performed for the impulse response function
filtered with the help of the ideal low-pass rectangular filter. The result of the
computation is the linear solution which corresponds to the first component of
the free surface elevation obtained in experiments and shown in Fig. 3 (B). For
comparison, the results of the numerical solution together with results obtained
in experiments are depicted in Fig. 6.
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Fig. 6. Linear part of the free surface elevation measured in the hydraulic flume (A) and resulting
from theoretical linear transformation (B)

It can be seen from the plots that the results of the theoretical model con-
sidered, fit the first component obtained in experiment quite well. With assump-
tion that the stochastic processes discussed herein are ergodic it is possible to
calculate the relevant correlation coefficient of these plots. For the case in Fig.
6, this coefficient is equal to 0.96 which indicates that the linear transformation
mentioned leads to an accurate description of the linear part of the surface wave
generated.
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On the basis of the linear solution represented by the sequence X(t) (Eq.
8 and Fig. 6) and, with the help of computer programs (Wilde 1992), it was
possible to calculate the second, non-linear component of the solution discussed.
In view of the previous considerations, the latter component corresponds double
the wavemaker basic frequency. The additional solution obtained in this way is
shown in Fig. 7 where, for comparison, the second component of the Stokes’ wave
obtained in experiment is also presented.
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Fig. 7. Additional non-linear component of the surface wave obtained in experiments (A) and
calculated by means of the theoretical model (B)

The differences between the plots in Fig. 7 are greater than those of the first
component of the wave, but they are still so small that they may be ignored in
practical applications. The correlation coefficient for this case is equal to 0.87.
Knowing that the amplitude of the second component of the wave (8) does not
exceed 20% of the amplitude of the first component, the results obtained may be
considered as being sufficiently accurate.

6. Concluding Remarks

A relatively simple analytical solution to the problem of generation of surface
waves of moderate amplitude in fluid of constant depth has been presented. The
solution obtained is based on the mathematical model of the description of such
waves given by Wilde and Romariczyk (1989) and on the impulse response function
for the generator fluid system. The numerical results of the theoretical model
developed in this paper were compared with experimental data. Within to the
Stokes’ second order of expansion, the model discussed leads to accurate results in
the stochastic sense. The theoretical solution to the problem on hand was derived
in two steps. In the first step, the linear solution was constructed by means of
the linear transformation of the generator motion process into the free surface
clevation process. Then, in the second step, the linear component of the surface
wave was used in calculating the additional, non-linear component of the wave.,
In this way, the Stokes’ type wave with two components was created which, in
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another formulation, would need a solution to the non-linear transformation of
the stochastic processes involved. From the records of the surface wave shown
in Fig. 3 (E) it can be seen that the crests of the wave components propagate
with the same phase and thus are solely components of the Stokes’ wave. The
first component of the solution discussed (Eq. 17) was obtained by means of the
linear solution to the initial value problem of fluid motion starting from rest.
The assumed time of observation (Eq. 27) was so long, that transients associated
with sudden motion of the wave maker at t = 0 died out due to a dissipation
mechanism in the system. It was therefore possible to apply the Stokes’ expansion
in the description of the waves generated as in the case of steady-state harmonic
generation of the waves. In our case however, the latter was described by means
of a narrow-band stochastic process and thus, correlation functions were used in
estimating the accuracy of the theoretical model proposed.
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