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Abstract

A model of the turbulent boundary layer under irregular (random) waves is presented.
The approach incorporates a time-invariant, two-layer eddy viscosity model including
the representative parameters: friction velocity and bottom boundary layer thickness.
The problem is closed by the iterative scheme for finding the wave period repres-
enting the random wave field. The scheme allows to solve the task associated with
the appropriate choice of the equivalent wave period and to include the coupling
effects between the harmonic components, incorporated in the eddy viscosity. Good
conformity between the theoretical shear stress evaluations and experimental data is
obtained.

1. Introduction

The possibility of obtaining a mathematically simple and fairly accurate description
of the rough turbulent boundary layer under irregular (random) waves deserves
considerable interest, in view of the practical importance of this physical phe-
nomenon. In natural conditions, the bed boundary layer under random sea waves
is often rough turbulent, and reliable knowledge about the varying fluid velocity
near the bed and the associated bed shear stress is of primary importance when
estimating, for instance, the magnitude of sediment transport.

Because bottom friction, like other characteristics of the motion resulting from
surface waves, is a random process, determination of a transition function between
surface waves and bottom friction in the domains of time and frequency is the
basic task. The determination of the quantity t,ms, in response to known irregular
series characterized by the root-mean-square value of the velocity at the top of the
bottom boundary layer, is an important practical aspect. Analogically to theoretical
solutions and semi-empirical formulae (the discussion of which can be found in
Kaczmarek and O’Connor (1993b)) describing the friction coefficient for regular
waves, one can expect the following relationship expressing tyms:

Trms:fl[Ura ’Ii‘r,kasz(Tr,S,d)] (1)




30 L. M. Kaczmarek, R. Ostrowski

where U, is the velocity amplitude at the top of the boundary layer for sinusoidal
waves — representative in the description of spectral waves, T, is the representative
wave period, k, is the bottom roughness, 7, is the representative bed shear stress,
s = ps/pw is the grain/water density ratio and d is the diameter of bottom sediment
grains. The proper definition of a representative wave is of great importance in
the use of Equation (1).

Madsen et al. (1990), basing on a theoretical solution, defined the quantity Uy
as U,y (satisfying the energy equation):

Upms = \/ﬁ @

IZ(Un/wn)z
T, = 2n—n——
(2 U;

where U, and w, denote respectively the amplitudes and frequencies of the com-
ponents of Fourier series describing random signal.

They obtained a solution for the boundary layer flow for a wave motion spe-
cified by its directional spectrum using the linearized form of the boundary layer
equations and a simple, time-invariant eddy viscosity formulation. The closure was
obtained by requiring the solution to reduce, in the limit, to that of a simple har-
monic wave, described by the parameters (2) and (3). However, while overcoming
the problem of which equivalent periodic wave velocity amplitude to choose to
represent the random field, their approach does not provide information on the
appropriate choice of the equivalent wave period. They psed a simplified version
of the vertical eddy viscosity concept (which varies linearly with distance from the
bottom) and therefore the equivalent wave period becomes a parameter to be
fitted to the wave friction factor formula similar to that originally proposed by
Jonsson (1966) by theoretical justification.

An alternative approach was taken by O’Connor et al. (1992), who showed that
the period 7; is better described by Tmax than 7; (zero-crossing). Their results for
the mono-wave simulations using Hy, Tmax and H;, T, are shown in Figure 1. It is
clear that the best comparison with the random wave model is obtained with H;,
Tinax and not with the more traditional H;, T; combination.

The main goal of the present study was to find a theoretical transition function
between irregular surface wave motion and the bed shear stress in the domains
of time and frequency and to find the formula (1). As there are two functional
relationships fi and f; in Equation (1), a simplified case of motionless bottom is
considered, with k, = const. Such a simplification results from the fact that the
determination of f> in Eq. (1) requires the formulation of the model of boundary

and
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Fig. 1. Bed boundary layers under random wave and representative monochromatic waves, after
O’Connor et al. (1992)

layer and sediment movement transport allowing for the generation of normal
and tangential stresses (in the soil) by the surface waves. This is, however, very
sophisticated and requires a separate analysis. It is worth referring to Kaczmarek
& O’Connor (1993a, b) who took advantage of a new theoretical approach to
mathematical description of moveable bed roughness under regular waves for
flat and rippled bed. The iterative procedures for the determination of f, were
adapted by Kaczmarek et al. (1994) for the case of irregular (random) wave and
— for the description of various nonlinear effects — by Kaczmarek (1995).

To overcome the problem associated with the appriopriate choice of the equi-
valent wave period we start from the linear equation governing the bottom bound-
ary layer flow. A simple time-invariant eddy viscosity formulation is still main-
tained to be valid, however, in contrast to Madsen’s et al. (1990) study, a two-layer
eddy viscosity model is proposed. Next a solution for the boundary flow is obtained
for a wave motion specified by its spectrum. The problem is closed by an iterat-
ive scheme for finding the wave period representing the random wave field. The
agreement between the theoretical shear stress evaluations and experimental time
series supports the validity of the present spectral model.

2. Spectral Wave Model
2.1. Governing Equations

The present theory is assumed to hold in the region z > zy, where z = 0 defines
the theoretical bed level. If the bed is very rough, as it may be when it is covered
by artificial ripples, then the theoretical bed level will lie somewhat lower than
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the top of the ripples, cf. Jonsson & Carlsen (1976). There seems at present to
be no rule from which one can predict the magnitude of this small displacement
theoretically. In practice, one determines the level z = 0 when fitting the observed
velocity profile above the bed to a logarithmic distribution. The quantity zo will
be determined from the equation:

w=2 @

in which k, = bottom roughness parameter. The value of k, can be determined
experimentally by fitting the observed velocity profile to a logarithmic profile, as
shown by Jonsson & Carlsen (1976).

The basis equation of motion may be written as:

(z,1)
]

in which u(z, t) = horizontal fluid velocity, U(t) = free stream velocity, i.e. at the
top of boundary layer, t(z,¢) = shear stress and p = density of water.

In Equation (5), it has been assumed that the nonlinear convective term is
negligible. Moreover, it has been assumed that the boundary layer is so thin that
the horizontal pressure gradient dp/dx can be replaced by the term —pdU/dt
arising from potential theory.

The background and the conditions of applicability of the simplified equation
of motion for the bottom boundary layer has recently been discussed by Nielsen
(1992). It has been shown that the flow inside the boundary layer can often be
considered to be essentially horizontal. Furthermore, in broad terms one can
neglect the convective component in the equation of motion when the velocity is
horizontally uniform.

The first requirement for obtaining horizontal uniformity is that the free
stream velocity U is uniform. This condition is fulfilled exactly over oscillating
plates and in oscillatory water tunnels, while under real waves the convective
term is negligibly small — as deduced by Nielsen (1992) — for small values of
am/ L ratio (ay,, = amplitude of water motion at the top of boundary layer; L =
wave length).

The second criterion for horizontal uniformity in the boundary layer is that
non-uniformities introduced by individual roughness elements should be restric-
ted to a layer which is considerably thinner than the boundary layer itself, see
Figure 2. Since the scale of the disturbances introduced by the individual rough-
ness elements is the bed roughness k,, this may be expressed by 8/k, > 1 which
corresponds to aym,/k, > 1, as 8/k, is an increasing function of a1,,/k,.

Following Jonsson (1980) it is convenient to introduce the defect velocity, ug,
measuring the deviation from the free stream velocity:

ug(z, t) =uz,t) = U@). (6)

d a
-aT[u(z’ H-U®]= = [
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The idea of a position dependent but time independent viscosity means that
one can write the shear stress as:

du(z,t) du4(z,1)
re = p(z) T (7

It is now convenient to introduce complex notation which determines the
dependence of velocity on time and will ensure the analytical solution of the
equation of motion. The free stream velocity will be written as U(t) = Uexp(i wt),
in which U = real velocity amplitude. Similarly, one may write:

and  ug(z,t) = ug(z)e' 8)

T(z,t) = pu(z)

u(z, t) = u(z)e'*

in which u(z) and uy4(z) are in general complex due to the phase shift relative to
the free stream velocity. Equation (5) may now be written as:

d dug(z)
dz dz
It is fortunate that this equation is explicitly solvable both when v, (z) varies

linearly with z and when it is a constant. Thus, following Brevik (1981), the two-
layer eddy viscosity model is proposed:

[v, z) ] —iwug(z) =0, 9)

)
v (2) = kugz for :‘—6 <z < I’ + ];‘—6 (10)
& ks & | ka
Vi = KUy (-Z + %) for z>7+35 (11)

where us, = /7, /p and &, are the representative friction velocity and represent-
ative bottom boundary layer thickness, respectively.
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2.2. Solution Procedure

To solve the governing equation (9) the free stream velocity is specified as that
associated with a wave spectrum, i.e.:

U =) Une™ (12)

in which the index n denotes summation over frequencies. With such a represent-
ation of U(¢t) the velocity amplitudes U, are related to the near-bottom orbital
velocity spectrum and to the surface amplitude spectrum through:

wn
Un = 28y (wn)dw = sinhGo )V 28, (@n)dw (13)

in which @, and k, are related to each other by linear dispersion relationship.
The linearity of Equation (9) combined with the assumed time-invariant eddy
viscosity concept (10) and (11) suggests a solution in the form of:

u(z,t) = Zun(z)eiw' (14)

in which u,(z) represents the complex velocity component amplitudes and only
the real part of Equation (14) constitutes the solution sought.

Introducing Equations (10) and (11) into Equation (9), one can obtain the
equation for each velocity component n. Introducing the dimensionless variable:

5o = (dan ) (15)

fr

for the overlap layer, in which v, is given by Equation (10), it turns out that
Equation (9) reduces to the standard differential equation for the Kelvin func-
tions of zeroth order, with &, as the independent variable. It is convenient, after
Brevik (1981), to write the solution as:

lgn="U, D,;_I[An (ber, + ibei&,) + B, (kerg, + ikeign)] (16)
in which D, is a constant quantity defined by:

D, = [(ber1£a, — beiban)keréa, — (beiréan + beréan)keibon +

—(ker1éa, — keia,)berpy, + (keilgj_ﬁn + keréan)beifo, ] +

+i[(bei1gan + beréan)kerég, + (berian — beiéan)keibon +
—(keiréan + keréan)beréy, — (keriéan — kei€an)beibon]. (17)

In the above expression, ber;, beiy, etc. = first order Kelvin functions. The
formulaec for &, and £5, are given by Equation (15) with z =zp and z = A,,
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respectively, while A, = &, /4 + k, /30. The quantities 4, and B, are dimensionless
constants, in general complex, that have to be determined from the boundary
conditions.
The solution of Equation (9) in the outer layer, in which v; is given by Equation
(11), reads:
ugn = —Un T, Dt exp[—(1+1)u(z — A1) (18)

in which:

1

Wy 2
h={=—] . 19
Further, 7, is a new constant, in general complex. In writing Equation (18),
use has been made of the requirement that uy — 0 when z — co. The minus sign
in front of the equation has been added for convenience, as the physical defect

velocity is usually negative.
The boundary condition:

un(zo) =03 ugn(zo) = —Uy
and the continuity of ug, and shear stress at z = A, yields:
Ay = keriEa, — keiga, +i(keirEan + kerga,),
B, = —beri§an +beiéa, —i(beiia, + beréa, ),

T, = (—beriEankeréa, —beiréankeifs, — keri€anberéa, + keiranbeiés,) +
+ i(—beriéankeiéa, + beirfankeréa, — kerianbeiba, — keijéa,beréy,).

On the basis of the velocity solution, from the expression for the bottom shear
stress, Equation (7), one can obtain the shear stress at z =zp (complex value)
which can be expressed as:

T(t) = Ty expli (wnt + @rn)] (20)

where 1, and ¢,, are the bed shear stress amplitude and phase, respectively,
corresponding to nth harmonic component U, of the input free stream velocity
random series U(¢).

2.3. Closure Scheme

The solution obtained for the turbulent flow in the wave boundary layer involves
the representative friction velocity uy, and the representative thickness of the
boundary layer §,, which are yet to be specified. Although each harmonic com-
ponent of wave motion is described by the same equation, i.e. Equation (9), there
is a coupling between the components incorporated in the eddy viscosity. This will
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appear later in the modelling of the representative values uy, and é, by iterative
procedure (Scheme 1).

The velocity solution given by Equations (16) and (18) was first proposed
by Brevik (1981) for regular waves. However, he has not specified the values
usr and &, which become the parameters to be fitted by comparison of model
predictions and observations. The complete numerical solution of Equation (9),
with the two-layer eddy viscosity described by Equations (10) and (11), has been
proposed by Kaczmarek & Ostrowski (1992a). This approach has provided good
results of comparison with a wide range of laboratory tests, with a similar degree
of accuracy as the other models. The method is also capable of describing the bed
boundary layer under nonlinear waves, as well as nonlinear waves and currents,
see Kaczmarek & Ostrowski (1992b, ¢, d). It has been proposed that quantities u,
and §, be determined from the differential equation derived by Fredsoe (1981):

dzy _ 30!(2[]::(@:10 _ z1(e®1 —z1 — 1) i dU,
d(wnt) B ksfb‘n[ez] &1—1)+ 1] e?1(zy — 1)+ 1 U, d(wnt)

(21)

from which the function z;(¢) was obtained and the time distributions of the
friction velocity uy and the boundary layer thickness 8(¢) calculated thereafter on
the basis of the following equations:
g (22)
L

ka (2

Further, the representative friction velocity us, and thickness of the boundary
layer 8, have been specified as:

Ugr = ufmax, (24)
6r = am = max(al, 62) (25)

where v max 1s the maximum value of bed shear velocity during the wave period,
that is max[us(wt)] and é; and §; the boundary layer thicknesses at the moments
corresponding to maximum and minimum velocity at the top of the turbulent
boundary layer.

Here, the combination of the solution given by equations (16) and (18) is
proposed with the determination of the values uy, and é. given by Equations
(21)(25).

It seems to be worth checking the combination for the case of regular waves
only. The results of computations are plotted in Figure 3, together with the res-
ults of the other theoretical and experimental approaches within friction factor
considerations. Close agreement is found among the various theoretical models.
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For the wave motion given by free stream irregular series the iterative proced-
ure is proposed, shown in Scheme 1, to determine the representative period 7;,
friction velocity uy, and the boundary layer thickness §,, on the basis of Equations
(21)—(25).

3. Comparison of the Theoretical Results With the Laboratory Data
3.1. Experimental Set-up

The measurements were carried out in the IBW PAN wave flume. The wave flume,
0.5 m wide and about 20 m long, is equipped with a programmable wave maker
and can be filled with water up to 0.7 m. The reinforced concrete slabs were
placed on a steel frame to create a 12 m slope. The slope of mean inclination
1:20 represents a cross-shore profile with underwater bar. The experimental set-up
is sketched in Figure 4, and has been described in detail by Ostrowski (1993).
The device has been constructed to measure the bed shear stress. The move-
able plate is susceptible to very small shear forces while it does not respond to
any vertical load. The plate is buoyant and returns to its equilibrium when the
extorting force vanishes. The device is placed in a steel casing with a square hole
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Scheme 1. Computation of bed shear stress under irregular waves

[1] Fourier decomposition of the input U(r)
1
ue)= i t =
) ;Un sin(nwt + @) + ZUO

[2] Calculation of the input root mean square value:

Urms =] }Z UE
n

[3] Assumption of representative period T}

[4] Determination of parameters of representative eddy viscosity distribution: us, & 8, (running
Fredsoe’s (1981) model with Upms & T; as an input)

[5] Computation of representative shear stress amplitude pu:jr g (using Brevik’s (1981) approach

with Urps, Tr & eddy viscosity distribution from step 4. as an input)

[6] Computation of bed shear stress components 1, & ¢, using Brevik’s approach with U,, ne
(from step 1.) and representative eddy viscosity (determined in step 4.) as an input

[7] Calculation of bed shear stress root mean square value:

Trms = [)_ 73
n

[8] Checking whether pu? 5 (step 5.) = Trms (step 7.)

if NO — correction of 7; and going to step 4.
if YES — going to step 9.

[9] Calculation of output time series (bed shear stress):

() = Z T, sSin(nawt + @y + @)
n

[10] Computation of input and output spectra (optionally)

on top, uncovering the plate active surface, i.e. the surface on which the shear
stresses act. These stresses cause a plate displacement proportional to the indu-
cing shear force. The relationship between the displacement of the plate and the
shear stresses was determined using static and dynamic calibration, taking into
account such effects as inertia, damping and resonance. Discussion on the above
can be found in Ostrowski (1993).

The measuring device was located in the bottom at a depth of 0.385 m, between
the slope toe and the offshore bar, i.e. in the zone where waves were subject
to transformation without breaking. The active surface of the moveable plate
coincided with the bed surface. The video taping of the plate displacement with
a frequency of 50 frames per second was facilitated by provision of a glass wall
section in the flume. The video data is processed thereafter, providing the bed
shear stress series of 0.1 s interval between samples. The free surface elevation is
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also registered, using a wave gauge, as well as the horizontal velocity component of
orbital wave motion, using a micro-propeller. The latter is measured at a number
of points at the measurement section, with the lower-most point located 0.013 m
above the bed. The velocity series at this point has been assumed to represent
input free stream velocity at the top of the boundary layer.

3.2. Time Series Results

The bed shear stress and free stream velocity series were measured for three
irregular wave tests of the parameters given in Table 1.

Table 1. Irregular wave parameters at the measurement section
(depth h = 0.385 m, registration period 300 s)

Test | Hy [m] | 7, [s]
1 0.125 1.5
2 0.189 | 2.0
3 0.168 1.5

Taking the free stream velocity as an input, the bed shear stress series were
computed using the procedure presented in Scheme 1. The fragmentary results
of computations, together with the free stream velocity series, for Tests Nos. 1, 2
and 3 are shown in Figures 5, 6 and 7, respectively. The time lag of free stream
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velocity with respect to shear stress is visible in all cases. This phase shift amounts
to about 30° and corresponds fairly well to the quantitics measured/computed
for the case of turbulent boundary layer under monochromatic waves. The high
frequency fluctuations of computed bed shear stress reflect small scale fluctuations
of free stream velocity (less evident).

The fragmentary results of computations in comparison with measurcd bed
shear stress for Test Nos. 1, 2 and 3 are depicted in Figures 8, 9 and 10, respect-
ively. The conformity is good, although no secondary fluctuations of the shear
stress were measured, as the measuring device damps the displacements induced
by high frequency components of extorting force.

It should be noted that the representative wave period resulting from compu-
tations amounted exactly to spectral peak period (7; = T,,) for all analysed tests.
Furthermore, it was confirmed by computations that the representative period
does not depend on assumed bed roughness height ;.

3.3. Spectral Characteristics

Both the free stream velocity (on the basis of which the shear stress was com-
puted) and the measured shear stress were registered in the period of 300 s. The
sampling intervals for measured free stream velocity (input) and measured shear
stress (output) were At = 0.05 s. and At = 0.1 s, respectively. Thus the number
of samples was N = 6000 and N = 3000, respectively. However, the parameters
of spectral computations were chosen so as to provide the same frequency band
width for theoretical results and laboratory data.

The spectral density functions were determined for computed and measured
bed shear stress series. The results are depicted in Figure 11. The conformity is
good for Tests 1 & 3, satisfactory — for Test 2.

The bed shear stress 7, as a response to the free stream velocity U, represents
a physical system in which the velocity and the stress are output and input series,
respectively. Basic information on the spectral characteristics of the input-output
system is provided by the transmittance function:

Hy,: (@) = |Hy. ()| exp[—i pp ()] (26)

in which [Hy,:(w)| = amplification factor (transmittance function modulus), g (w)
= phase factor. It is not possible to compute a cross-spectrum for measured ve-
locity and shear stress (necessary for the determination of complex transmittance
Hy :(w)), as two different techniques were employed to register the velocity (in-
put) and shear stress (output), while the amplification factor |Hy .(w)| can be
determined on the basis of input and output spectra, Gy(w) and G, (w), using the
following formula:

G:(w) ) i (27)

|HU.1' (w)| = (GU(CU)
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(parameters of Tests Nos. 1, 2 and 3, Ostrowski 1993)
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taking either computed or measured shear stress series to calculate the output
spectrum.

Computed transmittance function moduli Hy (), with the output measured
and determined using the present theory, are shown in Figure 12. The full set of
transmittance curves is depicted in Figure 13. The experimental curves are not as
smooth as their theoretical counterparts but they oscillate about certain constant
values, while theoretical functions increase distinctly. Both the theoretical and
experimental results in Fig. 13 show that the transmittance function modulus
depends on the parameters of an experiment (wave conditions). This implies the
nonlinearity of the system: velocity — shear stress. The transmittance of the
linear system would be only a function of frequency w and would not depend on
the parameters of input series.

4. Summary and Conclusions

The main goal of the present study was to give a mathematically simple and
fairly accurate description of the rough turbulent boundary layer under irregular
(random) waves, ensuring the formulation of a theoretical transition function
between irregular surface wave motion and the bed shear stress in the domains
of time and frequency.

To obtain the above we started from the linear equation governing the bottom
boundary layer flow with a simple time-invariant eddy viscosity model. However,
in contrast to Madsen’s et al. (1990) study, a two-layer eddy viscosity formulation
was proposed. Next, a solution for the boundary flow was obtained for a wave
motion specified by its irregular series. The Fourier decomposition was used.

The problem has been closed by the iterative scheme for finding the wave
period representing the random wave field. The scheme affords a solution to the
task associated with the appriopriate choice of the equivalent wave period and
includes the coupling effects between the harmonic components, incorporated in
the eddy viscosity.

Conformity of theoretical shear stress evaluations and experimental data which
supports the validity of the present model was obtained.

For the range of the available experimental data the representative period was
found to be equal to T, (spectral peak period), irrespective of the bed roughness
K
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