Archives of Hydro-Engineering and Environmental Mechanics
Vol. 42 (1995), No. 1-2, pp. 3-27

Nonlinear Effects of Waves and Currents on Moveable Bed
Roughness and Friction

Leszek M. Kaczmarek

Institute of Hydro-Engineering Polish Academy of Sciences, ul. Koscierska 7,
80-953 Gdaiisk, Poland

(Received March 01, 1995; revised June 30, 1995)

Abstract

A new theoretical approach based on the grain-grain interaction ideas is proposed
for the evaluation of moveable bed roughness under regular and irregular waves, si-
nusoidal/asymmetric waves with/versus currents. This method uses Coulomb friction
between particles (plastic stresses) with viscous-type stresses for particle collision
stresses to represent seabed drag effects in a similar way to the flow of cohesion-
less material. By using an iterative procedure to balance the overall drag the bed
roughness is related to the applied hydrodynamic stress and hence the external wave
field. The theoretical bed level is defined by the matching point of the logarithmic
distribution with the sub-bed flow profile. For the moment when maximum shear
stress occurs the continuity of shear stress and velocity at the theoretical bed level is
required.

The ability of the proposed iterative procedure to evaluate the roughness para-
meter has been checked for sandy bed with various grain diameters and various
regular and irregular wave conditions. The proposed approach explains the reduction
of spectral wave friction factors. The various aspects of the nonlinearity in respect
to moveable bed roughness including the asymmetry of waves and the interactions
between asymmetric waves and currents are discussed.

1. Introduction

A wide variety of coastal problems rely on accurate prediction of sediment trans-
port in response to the action of waves and currents. However, the prediction of
the effect of waves on sediment transport is still generally restricted to monochro-
matic, unidirectional, non-breaking waves. In real sea conditions, where irregular
waves are observed, the nonlinear process of sediment transport may respond
in a rather different way to the idealized regular wave case. Other aspects such
as wave-breaking and wave asymmetry are also important in terms of sediment
transport, particularly in shallow water as in the coastal environment.

In shallow coastal waters the flow and the sediment transport are largely con-
trolled by friction. Consequently, the computations of these quantities are found
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to depend strongly on the bed roughness, parameterized by the seabed drag coef-
ficient, the bottom equivalent roughness, or the bed roughness length z.

For a turbulent flow over the seabed, the velocity profile in the near-bed region
can be represented by the familiar von Karman-Prandtl equation:
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where u(z) is the fluid velocity at height z above the bed, x is von Karman’s
constant (= 0.4) and uy the friction velocity, while the bed roughness length zo is
related to the apparent (Nikuradse equivalent) roughness k, by the relation:

_k
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The specification of the roughness is, however, a major source of uncertainty.
Generally speaking velocity profile measurements made close to the sea bed are
found to fit Equation (1) by plotting as a straigth line on « versus In z axis. A
least squares technique can then be used to obtain the best fit of Equation (1)
to the measurements, the gradient of the fitted profile gives uy and the intercept
of the profile with z-axis yields the roughness length zq the height above the bed
where the velocity extrapolates to zero.

The uncertainty of applying laboratory derived values or relationships for &,
to seabed sediments has meant that in practice it is probably safest to estimate
k, from velocity profile measurements made in the sea if they are available. The
complications in determining uy and k, once sediment is in motion have been
summarised previously by Soulsby et al. (1983):

2)

Zp

a) the ripple geometry may change with time causing variations in zo,

b) the saltations of grains along the bed enhance the momentum transfer from,
the flow to the bed, causing an increase in zp.

¢) the suspended sediment in the water column produces a vertical density
gradient and hence a departure from Equation (1).

Consequently the present study looks for a simple way to predict the moveable
bed roughness under regular and irregular waves, symmetrical waves with/versus
or without currents, from a small number of available velocity parameters.

To parameterize the roughness parameter k, in terms of the wave spectrum
and a few other parameters, it is necessary to start from the surface elevation
spectrum which must be transformed into orbital velocities at the bed and then to
bed shear stress which is used in a sediment transport formula. This route from
surface elevation to sediment transport is shown in Fig. 1 (Ockenden and Soulsby,
1994). The problem is highly nonlinear and the importance of the nonlinearity is
therefore central to this study.
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At three points in the process it is necessary to make nonlinear transformations
(Fig. 1). Additionally to three nonlinear transformations there is another one due
to the nonlinear character of the near bed interactions between water motion and
the seabed itself. These interdependencies, described by items (a) - (c), can be
expressed by the following relationship:

zZ0 = %:f(uf,s,d), 3)

where: s — specific grain density (2.66), d — grain diameter.

The determination of the function f in Equation (3) requires the formulation
of the model of a boundary layer and sediment movement accounting for normal
and shear stress generation in the soil by surface waves.

To this end, a new theoretical approach based on the grain-grain interac-
tions idea is proposed. This approach follows the earlicr method described by
Kaczmarek and O’Connor (1993a, b) for sheet-flow and rippled-bed conditions
under regular waves respectively and the Kaczmarek et al. method (1994) for
spectral waves.

This method uses Coulomb friction between particles (plastic stresses) with
viscous-type stresses for particle collision stresses to represent seabed drag effects
in a similar way to the flow of cohesionless material. By using an iterative pro-
cedure to balance the overall drag, it is possible to relate the bed roughness to
the applied hydrodynamics stress and hence the external wave field.

The method for spectral waves is based on the methodology which assumes
that the spectral wave condition can be represented by a monochromatic wave
and includes the suggestion of Madsen et al. (1990), that the longer waves in a
spectral simulation shave off the sharp ripple crests, thereby causing the observed
reduction in dissipation and friction factors.

The various aspects of the nonlinearity in respect of moveable bed, rough-
ness and friction are discussed, including the asymmetry of waves (described by
Stokes’ second and third theory) and the interactions between asymmetric waves
and/versus currents.

2. Moveable Bed Boundary Layer Model
2.1. Formulation of the Problem

A typical velocity vertical distribution of a rough bed is supposed to be character-
ized, cf. Kaczmarek and O’Connor (1993a, b), by a sub-bottom flow and a main
or outer flow, as shown in Fig. 2.

The velocity distribution is supposed to be continuous. Its intersection with
the nominal bottom is the apparent slip velocity u;,. The downward extension of
the velocity distribution in the outer zone of the main flow yields a fictitious slip
velocity ug at the nominal bed, which is necessarily greater than u, because of the
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Fig. 1. The nonlinear route from surface elevation to sediment transport, after Ockenden and
Soulsby (1994)
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Fig. 2. Definition sketch of turbulent flow over a moveable bed

supposedly asymptotic transition in the buffer layer between the sub-bed flow and
the fully turbulent flow in the turbulent-fluid shear region.

The velocity distribution in the roughness layer depends on the type of geo-
metric roughness pattern and the bed permeability. There must be some transition
between both parts of the velocity distribution in the buffer zone. However, for
present purposes it is assumed that the velocity distribution in the turbulent-fluid
shear region can be determined by parameters depending on the geometric rough-
ness properties of the bed and outer flow parameters, such as the free-stream
wave velocity. It is proposed to extend the sub-bed granular-fluid flow region to
the matching point with the velocity distribution in the turbulent-fluid shear re-
gion. Thus shear stress velocities in the two layers are set equal at the theoretical
bed level, as is shown in Fig. 2, point A.

The first problem, therefore, is to determine the distribution of the velocity
profile in the upper turbulent layer, which means determining the effective rough-
ness height of the bed k, as well as in the lower grain-fluid flow layer. The inter-
section of these two profiles will determine point A in Fig. 2.

2.2. Mathematical Description of the Flow in the Granular-Fluid Region

Particle interactions in the shear-grain-fluid flow are assumed to produce two dis-
tinct types of behaviour. The Coulomb friction between particles give rise to rate-
independent stresses (of the plastic type) and the particle collisions give rise to
stresses that are rate-dependent (of the viscous type). We assume the co-existence
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of both types of behaviour and the stress tensor is divided into two parts:
gij = 03] + 0} 4)

where ag is the plastic stress and o} is the viscous stress.

For two-dimensional deformation in the rectangular Cartesian co-ordinates x’
and z’, the Coulomb yield criterion is satisfied by employing the following stress
relations:

0¥, = —o'(1 + sing cos 2y), (5)
ozqz, = —o!(1 —sin @ cos 2vr), (6)
o)., = —alsingsin2y. @)

Where ¢ is the quasi-static angle of internal friction, while ¥ denoting the
angle between the major principal stress and the x’-axis is equal to:

T
r=3=%

For the average normal stress:

0_1 — (UJBX' _2}_ Uzqz’) (8)

we employ the following approximate expression (Sayed and Savage 1983).

al=a“(c_c°) (9)

Cm—C

where o' is a constant and ¢ and c,, are the concentrations of solids corresponding

to fluidity and closest packing, respectively.
The viscous part of the stress tensor according to Sayed and Savage (1983) is
assumed to have the following form:

2
* ou
Ot = Oy = —(to + H42) (g) i (10)
du | du
Ol =0 = i 37| 327 (11)

in which the viscous stress coefficients pq, n1 and u, are functions of the concen-

tration of solids ¢:
1 0.03

= 12

Psd2 (em — C)l's ' ( )
o + 12 0.02

22 (em—c) &)
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where p; and d are the mass density and diameter of the solid particles.

Considering steady fully developed two-dimensional shear-grain-flow, the bal-
ance of linear momentum according to Kaczmarek and O’Connor (1993a, b)
yields:

c—co | . , du 1
o [c g ] sin ¢ sin 2y + pq [8—:’] = pufc, (14)
m

_ 2
o [C CU] (1 —singsin2y) + (1o + p12) [-g;] =

Cin — €

zf

+ /
= [M] ,‘oufr + (ps — P)g [cdz (15)
ul c=cq 0

where p is the density of the fluid.
Eliminating (du/dz’)? from Equations (14) and (15) gives:

o (-C——ﬂ) [1 — sin @ cos 2y — (M) sin ¢ sin 21#] =
Cm—C M1

KO c=cp 1231 A

The system of Equations (14) and (15) enables the calculation of the profiles
of the sub-bed sediment concentration ¢ and velocity u in relation to known
maximum shear stress (ou? max) at the theoretical bed level (z' = 0).

In Kaczmarek and O’éonnor (1993a, b) Equation (16) was solved for ¢ as a
function of depth (z’) by using an iteration method in conjunction with numerical
integration. Integration started at the theoretical bed level (z' = 0) with ¢ = ¢j.
Proceeding downwards at each step the iteration method was used to evaluate
c. Integration was stopped when ¢ was equal to cp,. For the calculations the
following numerical values were recommended for the various parameters:

0

o

psgd

Typical stress distribution in the sub-bed flow layer for the ripple-bed con-

ditions (Kaczmarek and O’Connor 1993b) is shown in Fig. 3a, while - for the

sheet flow conditions (Kaczmarek and O’Connor 1993a) - in Fig. 4a. The typical

velocity and concentration of solids profiles for rippled-bed and sheet flow are

presented in Fig. 3b and 4b, respectively. The calculations were carried out for a
sand bed, characterised by the parameters:

=1, ¢g=0.32, cm=053, Cpm =0.50. (17a)

s = %S =266, ¢ =244 (17b)
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Note that the concentration of solids increases downwards the bed and the
introduction of the fictitious flow for rippled-bed condition (see discussion in
Kaczmarek and O’Connor 1993b) provides this increase up to the value of ;s =
0.50, where the particles lock together and where the momentum is transferred
only by the Coulomb friction between them. Finally, it allows the inclusion of the
seepage flow effect on the roughness parameter k,.
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Fig. 3. Exemplary computed stresses (a), velocity and concentration (b) in the sub-bed layer for
the rippled bed conditions

2.3. Mathematical Description of the Flow in the Turbulent Upper Region

The quantity us max is postulated to be determined from the solution of the integral
equation derived by Fredsoe (1984):

s+4
t(8) ™ _ 3_ B

where U(t) is the free stream velocity, 1 is the bed shear stress and 7(8) is the
shear stress at the top of the boundary layer, resulting from the mean current (if
present).

Fredsoe (1984) assumed that the velocity profile in the boundary layer is de-
scribed by the logarithmic function:

i Ly 2 (19)

; K ka'
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Fig. 4. Exemplary computed viscous and plastic stresses (top), velocity and concentration in the
sub-bed layer (bottom) for the sheet flow conditions
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The boundary condition at the upper limit of the boundary layer reads u = U
atz =48+ %. On the strength of Equation (19) one has:

p— k" Z1
§=2E" -1 (20)
in which U
z1 = ‘ (21)
Us + uso

where usy = [£1(8)]%°.

Fredsoe (1984), using the derivative of Equation (21) after re-arranging the
integral on the right side of Equation (18), obtained the differential equations

dz; _ 302U (wt) B e —z1—-1 1 dU (22)
dwt) kweizi—1)+1 e(z1—1D+1 U d(wt)
dzy 307 (| Fupo| (L tup)) 2| zyen—z-1) 1 aU -
d(wt) wk;Ule®1(z1 — 1) +1] ei(z1—1D+1 U d(wr)

for pure wave motion and wave with/against current, respectively.

The solution of Equations (22) and (23) was achieved by the Runge-Kutta
second-order method. As a result, the function z;(¢t) was obtained and the time
distributions of the friction velocity us(t) and boundary layer thickness (¢) cal-
culated thereafter on the basis of Equations (20) and (21).

It should be emphasized that the free stream velocity U(¢) can be described
as linear or nonlinear, thus Fredsoe’s model can be adapted to nonlinear (asym-
metric) wave/wave-current motion, cf. Kaczmarek and Ostrowski (1992).

The solution of Equations (22) and (23) enables the value of usnax to be
determined, if k, is specified. To evaluate the roughness parameter k, an iterative
procedure is proposed for finding the matching point A.

The entire velocity distribution is supposed to be continuous and the velocity
distribution in the outer zone of the main flow to be logarithmic.

Thus, the theoretical bed level is defined by the matching point A of the
logarithmic distribution with the sub-bed flow profile (Fig. 2). It is assumed that
the matching point A is when the maximum (in wave-current period) shear stress
pufr max Occurs. Hence, for the moment when maximum shear stress occurs the
continuity of shear stress and velocity at the theoretical bed level is required. It is
assumed that both the logarithmic and sub-bed profiles depend on the values of
k.. The calculations are stopped when the velocity at the top of the sub-bed layer
reaches the value determined by the logarithmic distribution, at the & /2 level.
The thickness &; /2 of the downward extension of the logarithmic distribution from
matching point A was chosen rather arbitrarily. However, this value yielded flow
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predictions which were in reasonable agreement, cf. Kaczmarek and O’Connor
(1993a), with the experimental results of Horikawa et al. (1982). The value of &
is the thickness of concentration in the sub-bed flow layer.

The existence of a logarithmic layer corresponding to Equation (19) is not
always equally obvious in the experimental data, cf. Nielsen (1992), and in some
cases the fitting of a logarithmic layer is somewhat arbitrary. However, in order
to formulate simple models of natural flows it is generally necessary to apply a
simplified description of the bed geometry, and in extreme cases one often tries to
summarize the bed geometry in terms of a single length, i.e. equivalent Nikuradse
roughness.

Generally, the existing models for oscillatory boundary layers fall into two
broad physical categories, namely horizontally uniform models where u = u(z, t)
and models which take into account the horizontal variability of u(x,z,t) (see
Fig. 5) between crests and troughs of the bed roughness elements. The latter
group is by far the smallest although realistic modelling of the flow over the
commonly observed sand ripples obviously calls for models which can describe
localized vortex formation.

A z free stream

e — o B MODEL

— theoretical bed

Fig. 5. Definition sketch for horizontally averaged model over rippled bed

Horizontally uniform models are much simpler. They can, however, only be lit-
erally valid at elevations which are well clear of the top of the roughness elements,
i.e. for z > k,;. Hence, unless § > k, they are at most relevant as descriptions of
the horizontal average of the flow.

The viability of the assumption of a logarythmic velocity distribution at all
phases of the flow depends on the relative roughness &, /ay,,. Rippled sand beds
generally gave &, /ay, > 0.2. This value is only meant as an indication. The choice
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of an upper limit of k, /a1, for the application of horizontally averaged models
does of course, in the end, depend on the amount of details one needs to consider.

3. Results of Computations
3.1. Regular Waves

The ability of the proposed iteration procedure to evaluate the roughness para-
meter k, has been checked for a sandy bed (s = ps/p = 2.66; ¢ = 24.4°) with
different grain diameter d and various wave conditions. The results of the com-
putations are plotted in Fig. 6, together with the results for irregular waves which
are discussed in section 3.2.
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400.00 — '
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- ——— approximating curve (regular waves)
:ﬂ T * --------------- approximating curve (iregular waves)
J
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0.00 : 888 |
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Shields parameter

Fig. 6. Computed roughness parameter k, for regular and irregular waves

The present results show quite the opposite trend of the behaviour of the
roughness parameter to those suggested by many authors, where the roughness
parameter increases drastically with increasing transport intensity. Here, it is seen
that the roughness parameter decreases with increasing dimensionless maximum
bed shear stress Omax (Shields parameter) defined as:

"
B o e I (24)
max G — l)gd

Providing that 6max (47 max) is obtained using the proposed model, i.e. Equa-
tions (21), (22) and (23), it is worth giving an approximating formula for the



Nonlinear Effects of Waves and Currents ... 15

purpose of engineering applications:

log [%] = —0.95log[6max] + 4.55. (25)

The ability of the present theoretical approach to predict the roughness height
for rippled bed conditions is demonstrated here using the laboratory data reported
by Madsen et al. (1990). The experimental values of the wave friction factors
fw, obtained for the monochromatic waves are presented in Fig. 7 versus the
representative value of a fluid-sediment interaction parameter:

Vrar
S = - 26
I (26)
in which
' u:fzrndx 27
1n[’mr = —l)gd ( )

is the Shields parameter obtained from the maximum bottom skin shear stress
based on grain-size bed roughness, i.e. for k, =d, and . is the critical value
of Shields parameter for initiation of sediment motion. Thus the parameter S,
represents the extent to which threshold conditions are exceeded.

The calculations of the friction factors were carried out in two steps. First, the
values of the bed roughness k, were obtained using the proposed iterative scheme.
Then, the friction factors were calculated on the basis of adjusted semi-empirical
formula of Jonsson and Carlsen (1976).

+ log

~0.08 + log = 28
v LR -
to include the contribution of the vortices formation in the lee of the roughness
crest to the shear stress.

Here Equation (28) was proposed for the calculations of both the friction
factors and the skin shear stresses pu/ f max defined by Equation (27) and the fol-

lowing formula:
2”} max U f max 2
U 1m Uim

The calculations were performed for two different sediments (0.2 mm and 0.12
mm diameter quartz sands). The theoretical results are shown in Fig. 7. The results
for irregular waves, although discussed later — in section 3.2, are also included in
Fig. 7 for the sake of full comparison. The agreement between theoretical and
experimental results appears to be quite satisfactory.

The ability of the present theoretical approach to predict the roughness
height in the plane-permeable bed conditions is demonstrated here using the
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Fig. 7. Moveable bed friction factors for regular and irregular waves

field measurements of large wave boundary layers made by Myrhaug et al. (1992)
and VWS laboratory tests reported by Oebius (1992). The experimental data of
Myrhaug et al. (1992) were collected in two different measurements programs, the
Pipeline Field Measurement Program (PFMP) and the Pipeline Design Project
(PIPESTAB).

During the PFMP measurements the sea floor was characterized as generally
flat and rough, consisting of rock and gravel bed sediments. For the PIPESTAB
measurements the sea floor was generally flat and uniform, consisting mainly of
fine sand. However, during storms, ripples were formed. A characteristic grain
size diameter (dsp) for the bottom sediment was 0.20 mm.

According to the present theoretical approach one may expect small values
of ajm/k, for the case of a plane-permeable bottom. However, because the bed
remains flat it is expected that the geometrical scale of the roughness elements (the
sediment diameter) is at least an order of magnitude smaller than the thickness of
the turbulent boundary layer. Thus, the separation flow effects over the roughness
elements are negligible compared with the turbulent eddies connected with the
bed shear stresses. It was suggested by Kaczmarek and O’Connor (1993b) that for
such bed flow conditions the standard turbulent models can accurately predict the
friction factors. Indeed, the theoretical values of friction factor obtained by use of
Fredsoe’s (1984) model, plotted in Fig. 8, show good agreement with the analysis
results from the measurements made by Myrhaug et al. (1992). Consistency was
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also found by Myrhaug et al. (1992) between the analysis results from the field data
and those from large and small scale laboratory tests with sinusoidal oscillations
(see Fig. 8). The theoretical values obtained by Myrhaug et al. (1992) on the basis
of their semi-empirical relationships are also included in Fig. 8.

1 T T T 1) | U T L] L T T | T T T

1 L1 1111
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Q Jensen (1989)
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E + Calculations for Madsen & AL {1990 fmgulg )
0.005 o L1 5 1 [O L 1 — 1 L 34 |
0.1 056 1 5 10 60 100 500 1000
a./k,

Fig. 8. Wave friction coefficient versus amplitude-to-roughness ratio

For comparison, the theoretical results of the friction factors obtained using
the proposed iterative scheme for laboratory data of Madsen et al. (1990) and for
VWS laboratory tests of Oebius (1992) are also shown in Fig. 8.

The VWS report deals with development, design, construction and the testing
of an in situ shear stress meter, which is able to measure horizontal as well as
vertical shear force components. Coarse bed materials were used in the VWS
laboratory tests which were carried out under different sediment and velocity
conditions, but below the threshold for incipient motion of the sediment. The
measurements were carried out with a rigid shear plate made from aluminium
and covered with sediment of the same type as used for the surrounding sediment
bed. The different configuration of shear plates and casings (rigid and porous
structures) were constructed and investigated.

The results of the calculations of the shear stresses, on the basis of the iterative
procedure are shown in Fig. 9 in comparison with the measurements made by
Oebius (1992). Again, agreement between theoretical and experimental results
appears to be quite satisfactory, although considerable scatter of the experimental
points is observed.
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Fig. 9. Horizontal shear stress for waves over a permeable-flat bed

Basing on the present analysis it is not possible to arrive at a definite conclu-
sion as to how an irregular sea state should be represented. However, it should
be mentioned that for large wave activity during measurements in the North
Sea, ripples were formed. It indicates that for such conditions the wave friction
coefficient f,, should be described better by the Jonsson and Carlsen (1976) (or
Kamphuis 1975) formulae rather than by the Fredsoe (1984) turbulence model. It
was not confirmed, however, by the experimental data (see Fig. 8). In an attempt
to explain the behaviour of the friction coefficient the reduction of spectral wave
friction should be taken into consideration. The reduction of spectral wave fric-
tion factors considerably below the values of their monochromatic counterparts
was experimentally detected by Madsen et al. (1990) (see Fig. i 2

3.2. Irregular (Spectral) Waves

The effect of random waves on bed roughness needs to be studied, since it is
known that the bed friction changes between mono-frequency and random con-
ditions. The Madsen et al. (1990) hypothesis is that the larger waves in a spectral
simulation shave off the sharp ripple crests thereby causing the observed reduc-
tion in dissipation and friction factor for spectral waves. In an attempt to explain
this reduction of spectral wave friction factors a new theoretical approach for
predictive evaluation of moveable bed roughness for spectral waves is proposed
(Kaczmarek et al. 1994). The new approach is based on the method which as-
sumes that the spectral wave condition can be represented by a monochromatic
wave and is combined with the theoretical grain-grain interaction ideas.
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By analogy to a monochromatic wave, one may expect the following relation-
ship between the irregular input specified by the root-mean-square free stream
velocity amplitude U,,s (equal to +/2 times the standard deviation, oy, of the free
stream velocity series) and the irregular output specified by the root-mean-square
bed shear stress amplitude 7.,,,; (equal to +/2 times the standard deviation, o, of
the bed shear stress series):

Trmsl,2 = Fl.Z[Urms- 5.k = f(fmaxlssa d)] (30)

where subscripts 1 and 2 refer to the plane and rippled bed, respectively.

To calculate the function F, Fredsoe’s (1984) boundary layer model is re-
commended in the case of flat bed (F; — tmax1) While the empirical formula of
Kamphuis (1975) or semi-empirical equation of Jonsson and Carlsen (1976) are
postulated for rippled bed conditions (F; — tmax2) in order to include the effects
of the vortices formed in the lee of the roughness element crest due to turbulent
mixing.

Under monochromatic waves the maximum shear stress is the maximum value
of shear stress during a wave period, while for spectral waves it becomes the
maximum value of the random shear stress time series. To calculate this value it
is proposed to use the following simple relation (Kaczmarek et al. 1994):

= 30,. (31)

The choice is fairly arbitrary, however, and it will be shown later that it yields
the best agreement of the calculations using Madsen et al. (1990) data.

Thus, the procedure is proposed for determination of bed roughness under
irregular waves. The procedure incorporates the iterative method described in
section 2.3. The concise computational scheme is given in Fig. 10.

The value T, is the period of the monochromatic wave which represents the
random wave field. However, the question of which equivalent (representative)
wave period to choose to represent the spectral wave condition still seems to exist.

The problem is very sophisticated and requires a separate analysis. Here,
it is worth referring the reader to the studies of Kaczmarek et al. (1994) and
Kaczmarek and Ostrowski (1994), in which a combination of Fredsoe’s (1984)
and Brevik’s (1981) solutions and a k — € boundary layer model are being used,
respectively, to study the best representative wave.

The first method, i.e. Kaczmarek and Ostrowski (1994), uses a combination
of Fredsoe’s (1981) and Brevik’s (1984) solutions to describe each harmonic com-
ponent of the wave motion. A coupling exists between the component of the wave
motion. There is a coupling between the components incorporated in the eddy vis-
cosity modelling. A simple time-invariant eddy viscosity formulation is assumed
valid. However, in contrast to Madsen et al. (1988), a two-layer eddy viscosity
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Determination of input parameters:
representative free stream velocity amplitude U, ,
representative angular frequency w,

L]
Assumption of roughness k,
K| ¥
Computation of bed shear stress 7,,, using
integrated momentum method, Fredsoe (1984)
!
Computation of probabilistic value 7,
Toer 3%, 1 V2
!
Computation of roughness k,, = k(7 .0)
using iterative method described in section 2.3
)
/ Checking whether k, = k_, X

N ‘No |  Yes P

Correction of k,

END
|

Fig. 10. Computational scheme

model is proposed. The problem is closed by an iterative scheme for finding the
wave period representing the random wave field.

The second approach, i.e. Kaczmarek et al. (1994), follows the earlier method
of O’Connor et al. (1992) but using a k — ¢ boundary layer model to study the
best representative wave.

The ability of the present approach to evaluate moveable bed roughness, ,
under spectral waves was checked for a sandy bed: s = ps/p = 2.66, ¢ = 24.4° with
different grain size and various wave conditions. The results of the computations
are plotted in Fig. 6, together with the results for regular waves.

The following approximating formula:

log [’;—”} = —1.0510g[6;ms] + 4.00 (32)

differs slightly from the formula for monochromatic waves described by Equation
(25) (see Fig. 6) because the largest waves in a spectral simulation (described by
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Equation (31)) shave off the sharp ripple crests thereby causing the reduction in
the roughness parameter.

In an attempt to explain the reduction of spectral wave friction factors the
present theoretical approach was run with Madsen et al. (1990) laboratory data.
The theoretical values of the wave friction factors f,, are presented in Fig. 7,
plotted against the representative value of a fluid-sediment parameter, in which
the Shields skin parameter defined for spectral waves as:

_rf

’ rms

‘ p(s —1)gd 33)
is obtained from the bottom skin shear stress based on grain-size bed roughness,
ie. fork, =d.

The calculations of the friction factors for irregular waves were carried out
in a similar manner as those for regular waves involving two steps. First, the val-
ues of the bed roughness k, were obtained using the proposed computational
method (Fig. 10) with Fredsoe’s (1984) model used to determine the bed shear
stress, Tmrs. Then the friction factors were calculated on the basis of the adjusted
semi-empirical formula of Jonsson and Carlsen (1976) in order to include the con-
tribution of vortex formation in the lee of the roughness crests to the shear stress.
Here, the Jonsson and Carlsen (1976) formula was proposed for the calculation
of both the friction factors and the dimensionless skin shear stress.

The agreement between theoretical and experimental results again appears to
be satisfactory. Thus the reduction of spectral wave friction factors considerably
below the values of their monochromatic counterparts, can explain the fact that
for rippled regimes (as was observed during PIPESTAB storm measurements) the
spectral wave friction does not increase as drastically (according to Jonsson and
Carlsen (1976) formula) as for monochromatic waves. This can be clearly seen in
Fig. 8, where the results of computations for Madsen’s et al. (1990) laboratory
data (irregular waves, symbol +) approach the field measurements of Myrhaug et
al. (1992).

3.3. Nonlinear (Asymmetric) Waves

In the modelling of roughness parameter under asymmetric wave the iterative
method described in section 2.3 has beén used, as in the case of sinusoidal wave,
considered in section 3.1. The numerical solution of Equation (22), proposed by
Fredsoe (1984) for sinusoidal wave, has been adapted for the case of nonlinear
(asymmetric) wave. The free stream velocity U(wt) has thus been expressed using
nonlinear approximation. The 2nd and 3rd Stokes cases have been examined.
Figure 11 shows the relative difference of the roughness parameter k, for
linear and 2nd Stokes theories. It is obvious that the greatest reduction of k,,
amounting up to 40%, takes place for the depth-to-wavelength ratio 4/L = 0.10.
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The case of /L = 0.10 has therefore been tested thoroughly to perform the
comparisons of the roughness parameter for a number of cases: sinusoidal, non-
linear (2nd and 3rd Stokes theory) and irregular. The computational results are
plotted in Fig. 12, as well as the relative differences for all cases with respect to
the linear (sinusoidal) one. It can be seen that the most significant k, reduction
is obtained for random (irregular) waves and is almost constant, independent of
Shields’ parameter, amounting to about 40%.

60.00 —
— h1=0.27
40.00 —
————— WL=0.16
— - hL=0.10
= : &
20,00 — i
0.00 |
0.00 1.00 2.00 3.00 4.00

Shields parameter
Fig. 11. Relative difference of roughness parameter k, for linear and 2nd Stokes theories

It should be noted that the computational results for nonlinear and random
waves in Figs. 11 and 12 have been plotted as the functions of Shields’ parameter
corresponding to their sinusoidal counterparts.

3.4. Waves and Currents

The cases of sinusoidal and asymmetric waves with/versus a steady current have
been considered. In the modelling of roughness parameter under wave and cur-
rent the iterative method described in section 2.3 has been used, similar the cases
considered in the sections 3.1 and 3.3. The numerical solution of Equation (23),
proposed by Fredsoe (1984) for sinusoidal wave and current, has been adapted for
the case of nonlinear (asymmetric) wave, similar to as for the case of nonlinear
wave without a current. The free stream velocity U(wt) has thus been expressed
using nonlinear approximation. The considerations on nonlinearity have been lim-
ited to the 2nd Stokes wave proparting with/against weak and strong currents. The
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+
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Fig. 12. Roughness parameter k, and its relative differences for linear, nonlinear and irregular
waves

ratio Upmean/Urm Was kept constant and amounted to 0.2 and 0.5 for weak and
strong current, respectively. The quantity Uyeqn is the steady current, known as an
input, averaged over water depth in the outer region (outside the bed boundary
layer). The mean slip velocity (at the top of the bed boundary layer) is calculated
from U,ueqn With the assumption of the logarithmic velocity profile in the outer
region, using the model of Kaczmarek and Ostrowski (1992).

It should be noted that the friction velocity uyy in Equation (23), representing
the shear stress at the top of the boundary layer - resulting from the steady
current, is basically unknown. For its determination the computational method
proposed by Kaczmarek and Ostrowski (1992) has been used.

Fig. 13 depicts the relative differences in roughness computed for waves (linear
and nonlinear) and currents with respect to pure sinusoidal cases. For the sake
of complete comparison the case of irregular wave has also been included in the
plot.

The results shown in Fig. 13 imply that the greatest reduction of the roughness
parameter k, (about 40%) is observed when the waves are irregular and - in a
certain range of Shields’ parameter — when the nonlinear waves are accompanied
by a steady current (20—40%). Smaller reduction of k, (not exceeding 10%) occurs
in sinusoidal wave and strong current cases while it is negligibly small for sinusoidal
wave and weak current. It should also be pointed out that for nonlinear case the
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reduction of k, is greater for waves propagating with the current than for waves

versus the current.
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Fig. 13. Relative differences in roughness determination [%] with respect to sinusoidal case:
h/L =0.10 (smoothed values)

4. Conclusions

A new theoretical approach based on the grain-grain interaction ideas is proposed
for the evaluation of moveable bed roughness under regular and irregular waves,
sinusoidal/asymmetric waves with/versus currents.

The present findings for regular waves propagating over plane or rippled bed
can be summarized by the following equation:

rmaxl.Z = F1,2[U1m; Tvkﬂ L f(rmax1131 d)]

where subscripts 1 and 2 refer to plane and rippled beds, respectively, Uy, is
the maximum free stream velocity, T is the wave period, k; is the moveable bed
roughness, Tmax is the maximum shear stress during the period, s is the specific
grain density (2.66) and d is the grain diameter. The function f in Equation (34)
is described by the interative procedure presented in section 2.3, the results of
which yield the following simplified formula:

(34)

log [’;_“] = —0.9510g[Biuax1] + 4.5 (35)
where the Shields’ parameter is calculated using Fredsoe’s (1984) model.

To calculate the function F, Fredsoe’s (1984) boundary layer model is recom-
mended in the case of a flat bed (F; — tmax1), while the empirical formula of
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Kamphuis (1975) or semi-empirical equation of Jonsson and Carlsen (1976) are
postulated for the rippled bed equations (F; — Tmax2) in order to include the
effects of the vortices formed in the lee of the roughness element crest on to
turbulent mixing.

The bed friction changes between mono-frequency and random wave condi-
tions. By analogy to the relationship for a monochromatic wave, shown above,
one may expect the following relationship between the irregular input specified
by the root-mean-square free stream velocity amplitude U,ns (equal to V2 times
the standard deviation, oy, of the free stream velocity series) and the irregular
output specified by the root-mean-square bed shear stress amplitude 7, (equal
to +/2 times the standard deviation, o,, of the bed shear stress series):

3T ms1
Tms1,2 = F12 [Urms, Tk, =f ( \/i ’S=d):] (36)
where the subscripts 1 and 2 again refer to the plane and rippled bed, respectively.
The value 7, is the period of the monochromatic wave which represents the
random wave field. The question of which equivalent wave period to choose to
represent the spectral wave conditions is not discussed here. Further information
on choosing the representative period can be found in Kaczmarek at al. (1994)
and Kaczmarek and Ostrowski (1994), where a k — € boundary layer model and a
combination of Fredsoe’s (1984) and Brevik’s (1981) solutions, respectively, were
used to study the best representative wave. Based on Gdansk laboratory data
Kaczmarek and Ostrowski (1994) found that the representative period equals the
peek period.
The function f is expressed using the computational procedure (given in
Fig. 10), which incorporates the iterative method described in section 2.3 and
may be represented by the approximating formula:

log [%] = —1.0510g[6rms ] + 4.00. (37)

The above approximation differs from that given for monochromatic waves
due to the largest waves causing a reduction in the roughness parameter.

In an attempt to explain the reduction of spectral wave friction factors the
present theoretical approach was run with Madsen et al. (1990) laboratory data.
The agreement between theoretical and experimental results appears to be satis-
factory.

The various aspects of the nonlinearity in respect to moveable bed roughness
have been discussed including the asymmetry of waves (described by second and
third Stokes theory) and the interactions between asymmetric waves and/versus
currents. '

The present results imply that the greatest reduction of the roughness para-
meter k, (about 40%), for all shear stress conditions, is observed when the waves
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are irregular and — for large waves — when the nonlinear wave motion is accom-
panied by a steady current (20-40%). Smaller reduction of k, (not exceeding 10%)
occurs in sinusoidal wave and strong current case while it is negligibly small for
sinusoidal wave and weak current. It should also be pointed out that for nonlinear
case the reduction of k, is greater for waves propagating with the current than
for waves versus the current.

Finally, it can be concluded that the irregularity of waves is the most important
factor causing the reduction of moveable bed roughness. Smaller decrease of the
roughness parameter can be expected due to wave nonlinearity (asymmetry) while
the nonlinearity resulting from wave-current interaction has the smallest influence
on bed roughness.
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