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Abstract

The random elasticity theory is applied to statistically homogeneous elastic soil half-
plane subjected to gravity. The analysis is performed for the half-space in the plane
strain state. Only the elastic modulus is considered to be uncertain and is treated
as a two-dimensional random field. On the basis of Green’s function approach, the
stochastic partial differential equations governing the problem, are converted into
stochastic integral equations. Then the perturbation procedure and Adomian’s de-
composition method are applied. The first one imposes small fluctuation assump-
tions. A system of input stochastic differential equations with random coefficients
is here transformed into a few sets of stochastic differential equations with random
forcing terms. There is no small fluctuation assumption in Adomian’s decomposition
method. This method is essentially the solution of the stochastic Volterra equation by
the Neumann series expansion. The methods presented lead to approximated but ex-
plicit expressions for the statistical measures of stresses and displacements. Although
the numerical calculations were not performed, the approach presented offers the
tool which can afford quantitative results to the problem discussed.

1. Introduction

In part 1, a statistically homogeneous, horizontal soil layer subjected only to gravity
has been considered. It was assumed that the soil is elastic and only the modulus
of elasticity was random, described as a stochastic process. Thus the uniaxial
strain state analysis was justified. The governing elasticity equations in the form of
stochastic ordinary differential equations were solved using analytical approximate
methods.

In this part, the elastic half-plane, subjected also only to gravity, is considered.
However, the modulus of elasticity is now treated as a two-dimensional random
field. Therefore, the random elasticity equations become a set of two stochastic
partial differential equations with random coefficients, usually called a stochastic
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system. The analysis is carried out in the plane strain conditions and is supposed
to be an input to another analysis i.e. two-dimensional schematization of reality.
Again the perturbation method and Adomian’s decomposition procedure are in-
corporated. The solutions are based, as in part 1, on Green’s function approach,
where this functions means the displacements induced by a unit force acting in-
sight elastic half-plane (in a limit case at the surface). Appropriate integration
over entire the half-plane leads to expressions determining the displacements due
to gravity. Of course, the case of external loadings can also be included, by proper
integration over the affected interval of the surface. The knowledge of statistical
measures of the displacements due to gravity and external loadings enables de-
termination of statistical measures of stresses.

The analytical, even approximated methods yield insight into some basic rela-
tionships. Thus, such methods seem to be almost necessary in the stochastic cases.
Most commonly used are perturbation or hierarchy methods, although they essen-
tially limit systems to small fluctuations or truncations and closure approximations
are necessary.

The powerful approximated analytical method was considerably expanded by
Adomian (1983). Usually, it is called Adomian’s decomposition method, although
the name Green’s stochastic function method can also be found. This method was
evolved to achieve statistical separability, avoid truncations and, of course, to omit
small fluctuation assumptions. In this method, the solution process for the output
of a physical system, is decomposed into additive components, the first being
the solution of a simplified linear problem. Each of the other components is then
found in terms of a preceding component and, thus, ultimately in terms of the first
one. The usual statistical separability problems requiring closure approximations
are eliminated with the reasonable assumption of statistical independence of the
system input and the system itself.

The aim of this paper is the application of approximated, analytical methods
in solving basic boundary problems of random elasticity theory with reference to
geotechnical engineering.

2. Basic Equations

Let us consider a soil medium as an elastic half-plane (Fig. 1). Let Young’s mod-
ulus be a function of position E(x, y) and the only acting forces be those due to
gravity.

The fundamental plane strain equations, describing a given problem, are well
known in the non-homogeneous theory of elasticity. The equations in displace-
ments can be written in the following form:
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In the case of a homogeneous soil medium, the derivatives of Young’s modulus
E with respect to x and y vanish, and Navier’s equations for a homogeneous,
elastic material are obtained. Its solution for the half-plane subjected only to
gravity is known and can be written in the form:

_ (1+v)1—2v)
~ 2E(1-v)

where: a and b are the constants of integration and can be treated as an imposed
displacement and rotation of a rigid body. Of course, for the half-plane subjected
only to gravity, there is no rotation, so b = 0.

From the expression (3) it is seen that the state of displacements is not uniquely
determined. The displacements in the case of a plane stress analysis would be quite
different. However, the stresses are the same in both cases and they are equal to:

u=0, yy*+a+bx 3)

v
oy =VvY, 0x='1TvV)’s Ty = 0. 4)

It is worth emphasizing that the displacement of any particle of the soil me-
dium subjected to its own weight, has a rather abstract meaning. In fact, consid-
ering the elastic half-plane, it is obvious that the displacements, due to gravity,
have already occurred. However, knowledge of those displacements is necessary
in order to determine the state of stresses. In the case of homogeneous material,
stresses are given by expression (4).

3. Green’s Function

In order to solve the set of two equations (1) the concept of Green’s function
method and perturbation technique will be applied.
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The vertical and horizontal components of the displacement of the point (x, y)
due to the vertical unit force acting at a point (&, ) inside the half-plane may be
treated as Green’s functions. These functions have been derived using complex
variable methods and eventually can be presented in the form:

1 |J&c-8y—-n|[3-4 1 nx —Eyy +n)
U(xay,ﬁf,ﬂ)=2xu [ 4(1—U) [ ) +r_12]+ 4 +
ittt T
(1 - 2v)tan y+n}+w0 voy, (5a)
1 x—8?%3-4 1 ny
Ve &M = |‘4a-v>{ Z +_}+5(1—_)
2(x — &)? B3—-4v) r
X [1_—r2 ]—Z(I—v)ln r+4(1_v)111;*1'
+ v + wox (5b)
where:

r=Ja—82+0+n% n=Jc-62+0-n?

E
2(1+v)’
vo and wy are the constants of integration and can be treated as the imposed
displacement and rotation of a rigid body.

Finally the total displacements of the point (x, y) due to the soil’s own weight
can be calculated as double integrals over an area of the half-plane:

u:

u(e,y) = [ f y (€, MU, y. &, dédn, (62)
; -00 ()

v(x.y)=ffy(§, nV(x,y, & ndédn. (6b)
-0 0

If the soil is homogeneous the integration of (6) leads to the classical solution (3).

4, Stochastic Description of Soil Medium

It is assumed that only Young’s modulus is a function of position E(x, y) and can
be considered as a homogeneous, two-dimensional random field. Assuming that
the fluctuations are sufficiently small it can be presented in the following form:

E=E[1+4a B(x,y)] (7
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E — mean value of the modulus of elasticity,

o - coefficient of variation (small parameter),

B(x,y) — homogeneous and normalised two-dimensional random field
with expected value (8(x,y)) =0, variance Var[B(x,y)] =1
and given covariance or correlation (in this case both are the
same) function Rg (1, 12).

Because the random field of the modulus of elasticity must be differentiable,
the following covariance function is assumed:

Rg(t1,2) = A+ Mr) (A + Agrp)e M7 ¢y 1, > 0, (8)

For convenience this covariance function has a rather simple form and separable
correlation structure.

Taking into account (7), the derivatives of Young’s modulus, appearing in (1),
can be presented in the form:

E, = Eapi(x,y), Ey=Eaf,x,y). )

It is seen that the derivatives of B, with respect to x and y, are also two-
dimensional random fields, with zero mean values and covariance functions given
by the following expressions:

Rg (11, 72) = A3(1 — A7p)(1 + Agrp)eM1m R, (10a)
R, (r1, 72) = AJ(1 — Aam)(1 + Aqy)eMmi—ham, (10b)

There is also a covariance between random fields of the elasticic modulus and
its derivatives. For the random field B(x, y) the following covariance functions
will be used in further analysis:

Reg, (11, T2) = M1 (1 + Agrp)eMahem, (11a)

Rﬁpy (1, @) = l%‘rz(l + Ay )e Muhen, (llb)

5. Perturbation Method

If the random variations of the elastic modulus are of a low order the perturbation
theory may be applied. It was mentioned in part 1 that such theory is valid if the
coefficient of variation of the elastic modulus « is less than approximately 0.1 to
0.15. The modulus of elasticity given by (7) is in fact decomposed into two parts:
deterministic (mean value) and fluctuated. In the first order perturbation method
an unknown function is also decomposed into such parts. It is equivalent with an
expansion of the unknown function in the Taylor series, around small parameter
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a, and taking into account only the first two terms. In our case unknown are
displacements and appearing in (1) their derivatives. We can present them in the
following forms:

u=uyt+o-ug v=vy+a-uv. (12)

Substituting (7), (9) and (12) into (1) a set of the following stochastic differ-
ential equations with random coefficients is obtained:

Eap; [—A(uo, + auiy) + C(ugy + avly)] + Eaﬁy[uoy + auyy + vor + vy ] +
+E(1 + af) [~ AU + ouixx) + (Uoyy + attyyy) + D(vary + aviry)] =0,

Eaﬁy [—A(on + avyy) + Cluge + auu)] + E—aﬁx[uoy +auyy + voe + avic] +
+E(1 + aB) [—A(uoyy + aviyy) + (Vaex + @Vixx) + D@uaey + auyyy)] = —B(13)

Equating the terms with the same power of « the following two sets of two
equations are obtained:

—Auo” + Upyy =+ Dv(ky =0,
—Avgyy + voex + Dugry = —B/E. (14a)

Br (—Auqx + Cuoy) + By (uoy + vox) + B(—Auax + uoyy + Dugey) +

+ (—=Auyxy +uiyy + D) =0,

By (—Avgy + Cuqy) + Bx (uoy + vox) + B(—Avgyy + voxx + Duayy) +

i (_Avlyy + Vixx + Dulxy) =0. (14b)

Substituting (14a) into (14b) we can write:

—Auix + Uyy + Dley = — B (—Aug, + CUOy) = ﬂy(u(}y + vge),
—Aviyy + vty + Dtrzy = BB/E — By (—Avoy + Cutgy) + By oy + vox), (15)

or finally:

“Au]_xx + ulyy + Dv]_xy = f]_,
"‘Avlyy + Vixx + Durzy = f2 (16)

where:

fi = —Be(—Auqe + Cugy) — By oy + vox),
fo = BB/E — By(—Avgy + Cuqy) + Bx (uoy + vox). )
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Comparing (16) with (14a) it can be seen that we have obtained the same kind
of partial differential equations. This means that by small fluctuation assumption,
the set of input stochastic differential equations with random coefficients has been
transformed into two sets of differential equations, one of which is deterministic
(14a), and the second (16) contains the random elements as forcing terms. The
solution of the deterministic problem is given by (3) and (4). In order to solve
the stochastic problem, Green’s function method will be applied.

6. Stochastic Solution

The displacements of any point with co-ordinates x and y due to a unit vertical
force acting at point (£, n) are given by (5). In the case of the half-plane subjected
only to its own weight, the components of the total displacement can be calcu-
lated using formulae (6). In the case of application of the first order perturbation
method, it is easy to see that the average displacements are equivalent to the
deterministic ones. Thus, we can write:

Yy .2
= 0, = . 18
70} vo 2FA y (18)
Expressions (18) allow for determining the random forcing terms appearing

in the set of the stochastic differential equations (16), and defined by (17). Even-
tually, they can be written in the following form:

o acY
fl T ﬁxCEA ya
fr= -]’% [=21 + v)B + Byy]. (19)

Now, the displacement’s components u; and v; can be found by substituting f;
and f instead of y into expressions (6). This can be written as follows:

u(e,y) = f fi6. UGy, & mdedn,

0 —o0

ber,y) = f f faE. V(. y. £ mded. (20)

0 —o0

In the above expressions, f; and f> are random fields because they include B
which is a random function of £ and 7.
Substituting (5) and (17) into (20) the fluctuated parts of the displacements can
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be written in the following form:

T Tla-60-n[3-4 NG —Eyo +m)
wily) = ZJrv f_[[ 41 —-v) |: r2 +?j| F*
0 =00

~1 ~ 2utan~'% ;f}}ma iy, (21a)

| e-o[3-4 1 ny
][_4(1—1))[ r? +rfj|+2(1—v)r2x

Y2
X [1 — -2('2—2!’:)] 201 —-v)Inr + ¢ 4v) nl

4(1 - v)
x[=2(1 +v)B(&, n) + By (&, n)nld&dn. (21b)

The mean values of displacements u; and v; are equal to zero. We have to

calculate their variances and a covariance function.
Let us consider first a horizontal displacement u;. We can write:

uix, ) f f fiEn nOUG, v, £1, n)dErdny,
0 —o0

o0 o0
u' ) = [ [ A UGy, & ndtsdn, )
0 —o©
The variance of the horizontal displacements is as follows:

Var[u] = (Wul*) = f f / f FilEe a0 i s, w7 o %

0 =00 0 —o0

x Ux,y, &, np)dErdEdmdn;. (23)

It would be convenient to rewrite (22) in the following form:

= Hff[ (x—Sl)(y—m)m+q(x—§1)0;—m)m+

r

i 2(x — &)Y +m) R
L ri L — s tan 1y+ii:|ﬁgl(§1-m)d$1dm, (24a)
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2

u = H f [ [ x —ezxy —mm | &80 —mm

- + =
L j 52)0’ m) _ nptan! 2 &] Be, (€2, n2)dExdny  (24b)
P y+m

where:

1 -Cy 3—4v

T4 PTaaow Taaow T

r,r1 are functions of &, n, and 7, /7 are functions of &, n,.

Taking into account (19) and (24) and having in mind that 7y = |& — &, 12 =
|m — n2|, the variance of horizontal displacement can be calculated from the
following expression:

Varu] = B2 f f f f [ (x—sl)(y—m)m +qE= O —m
—00 O —00 rl
L ynhe - i)(y tm) tan_,l;;f]i ] 5 [p(x =80 = e,
p g% z,--z)(y2 —mm ynix —as_i)(v M) a1 —sz] 5
51 F y+m
x 231 — MlEr — E21)(1 + Aglm — na|)e~1lEr—Blg—Aalm—ml 4
x d&idEdmdn. (25)

According to Fig. 2 the following cases should be considered:

L &§-86&>0, m—n>0,

2. 5-6£>0, m—n<0,

3. 5i-&£<0, m—m>0,

4 &51—-&£<0, m—-m<0.
The integration of (25) is rather cumbersome. In spite of the necessity for
four-folded integration, which can be performed only numerically, there exist a

few kinds of singularities. Let us consider, for example, the areas of integration
1 and 3. The variance of the displacement, defined as a four-folded integral over
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those areas, after some rearrangements can be presented as follows:

E1=a by=a m=b ny=b 6 B 00— S5 — ]
L3 = H2 f f f [ [ 2 1 m 2r2 2 n2 7?17)2+

§1=0 &2=51 m=0n2=m

( —§)0 —n)&x — &)y —n2)mm

+p = +
x =&)Y —m)x —-&E)y + nz)mnz)’
TR riré
(x - &)y — m)mnz o1 —&
- y+mn
(x =&)Y —n)x — )y —n2)mn2
+p e -
Ly 2 =8y — fn)(-; - §2)(y —m)mm £
ryry
o x—&)y — '71)(1&72:452)()’ + m)mndy +
rnr
~ (x — 51)0?2— m)mnz WS 7] +
r y+n
Lo & —-&)0+n& :2&)0' — n2)nnay +
e (x—&)0 + n1)(x — &)y — nz)nmz)’
7
LGB0 +mE -0+ n2)n3ngy?
e *
(x &)y + rn)nlnzy a1 % — & 7
™ y+m
- (x -Ez)()’_z- nz)mnz o1% =&l %
y+m
=&y —mmm, _1x—§&
— q -2 t
y+m
- Sz)(y: nz)mn%y -
F y +m
2 a¥—8 g X— _ =
+ s%pimatan T tan T ] [1+22(m —nm2) — A6 — &) +

— MA(E1 — E)(m — m)Aje ME—e—Ram=m) g g desdmd . (26)
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Fig. 2. Area of integration of (25)

The integration of (26) may be performed over the limited area without losing
accuracy. It is so, because the exponent terms present under the integral vanish
much faster than the other terms. That means that only randomness of the soil
medium in the vicinity (at a distance less than a or b) has a meaningful influ-
ence on the calculated variance. Of course the size of the integration area, i.e.
values a and b depend on the parameters of the covariance function of the elastic
modulus. In the case of full correlation which corresponds to a deterministic prob-
lem, integration must be performed over a whole half-plane. If the correlation is
considerably small, only the closest vicinity may be taken into account.

It can be seen from (26) that after multiplication there are 48 four-folded |

integrals in this expression. Thus, in order to calculate the variance of the hori-
zontal displacement, almost two hundred such integrals must be computed. Un-
fortunately, the expression (26) has not yet been numerically integrated, because
computational facilities were not available. It is suggested that the Monte Carlo
method of integration would be of great profit. This is rather a technical problem,
although the singularities appearing here must be carefully considered. In fact, we
deal with a four-dimensional space &, &, n1, n2 and three kinds of singularities:

— double singularity if all & =x, & =x,m =y, m=y,
— singular hypersurface if £ =x and ;y =y or& =x and n; =y,
— singularity due to the infinite endpoints of the interval of integration.

The first two kinds of singularities have been computed and the values of
integrals at single points are found to be equal to zero. The third kind of singularity
may be dealt with by some approximate procedures or numerically.

It is worth noting that putting x = 0 into (26) will not change the generality
of this expression but it would only make it a little bit simpler.

The variance of the vertical displacements can be determined in an analogous
way.
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7. Adomian’s Decomposition Procedure

The basic feature of the perturbation technique is an ssumption of a small para-
meter i.e. that the coefficient of variation of the elastic modulus is small enough.
The set of stochastic differential equations with random parameters is here trans-
formed into a few sets of stochastic differential equations with random forcing
terms. There is no limitation of small fluctuations in Adomian’s decomposition
procedure, although some convergence criteria must be satisfied. The Adomian’s
decomposition method is essentially the solution of the stochastic Volterra integral
equation by Neumann series expansion.

Taking into account expressions (7) and (9), equations (1) can be written in
the following form:

aﬁx (—Au_x + va) + aﬁy(uy + Ux) + (1 +aﬂ)(—A.uxx + uyy + Dvxy) = 0. (27&)

afy (—Avy + Cuy) + afi (uy +ve) + (1 'i'aﬂ)(_Avyy + Uxx + Duxy) =
= —B/E. (27b)

Let us rewrite the equation (27a) in the following alternative way:

Auyy = Uyy + D‘-’xy + af(—Auxy + Uyy + Dvxy) +
+ afy (—Auy + C’Uy) +aﬁy (uy + %)

or

uyy = Auxx = Dvxy + aﬂ(Auxx T uyy e Dvxy) + aﬁx (A.ux - va) +
— afy(uy + vr) (28a)

and respectively equation (27b):
Urx = Avyy — Duyy + af(Avyy — vey — Duyy) + afy (Avy — Cuy) +
- aﬁx(uy + Ux) o B/E
or

— afy(uy + v:) + B/E. (28b)

Now, let us first consider the equation (18a), which in general can be written as .
follows: 2
Uy = f(x,¥,E, B, Bx. By Uy V0, Uy, ¥y, .. ). (29)
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It is convenient to present (29a) as an operator equation in the form:
Lyu=f (30)

where: L,, = d‘i—gz is a linear differential operator.
The solution of (30) can be given as the sum:

w=up+ Lo f =up+ f G, &) f (€)ds (31)

where: ug is the general solution of the associated homogeneous differential equa-

tion, G(x, £) is Green’s function for the operator L,, and for given boundary

conditions.

The second term of the sum in (31) is of course a particular solution of (30).
The equation (28a) in the operator form can be presented as follows:

Au = IIE ¥ Lx_xluyy + DL— Vxy +aL;;[ﬁ( Auxx +uyy + Dny)]

+ aL M [Be (—Auy + Cvy)] + e L By (uy + v2)] (32a)
or
u = u) + AL ugy — DLl vpy + o L)) [B(Attry —ttyy — Dugy)] +
+ Ly B (Auy — Cvy)] — oLy [By (uy + ux)l (32b)

Taking into account (31), the expressions for horizontal displacements can be
written in the following form:

Au = uf + f G(x, £)(uyy + Dugy)d§ +a f G(x, §)B(—Auxx +uyy + Dvgy)dE +

+ a/G(x, £)B: (—Auy + Cvy)dE +af G(x, &)y (uy + vy)dé (33a)

or

u= uﬁ +Af Gy, n)(Uxx — ny)dn +afG(v, n)B(Auyx —Uyy — Dny)dn +

+ af Gy, n) By (Au, — va)dn - af Gy, U)ﬁy(uy + v )dn. (33b)

The expressions for the vertical displacements may be derived in the same way.
Eventually, they take the form:

v =1 +Af G(x, £)(vyy — Duyy)dt +afG(x, £)B(Avyy — vex — Duyy)dE +
e f GG, £)By (Avy — Cu)dt — a f G, £)B (uy + vo)dE +

_ B/E f Gx, £)dE, (34a)
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or

Av = Uﬁ +fG(}’~ ) (Vxx + Duzy)dn +“fG(ys N B(—Avyy + vxx + Duyy)dn +
F a[ Gy, n)py(—Avy — Cuy)dn +af G, mBx (uy + ve)dn +
—B/E f GGy, n)dn. (34b)

It must be emphasised that, according to (31), all functions appearing in the
integrands of the expressions (33a), (34a) are functions of &£ and (33b), (34b) are
functions of n. :

Both horizontal and vertical components of the displacement are presented
in alternative forms. A linear combination of these two forms is necessary. Let us
multiply the second equation of (33) by A, add to the first one and then divide
by two. Eventually we obtain:

24u = uﬁ +Au5 + f Gx, S)(uyy 4 Dvxy)dE +A2f Gy, n)(uxx — ny)d?? +
+ [ G(x, £)p(—Auyy +uyy + Duyy)dE +aAf Gy, n) x
X B(dtes — sy = Dug)dn +a [ G, §)c(~Aus + Cuy)d +
+ad [ G, mp s = Con -+ [ Gox, 618wy + v +

The vertical displacement can be presented in the same way:
24v = AV} + v} +A2fG(x, £)(vyy — Duyy)dE + f G, n)(vex + Duzy)dn +
+ aAf G(x, §)B(Avyy — vyx — Duyy)dE +af Gy, n) x
x B(=Auyy + Vyx + Ditgy)dn + ad f Gx, £)By (Avy — Cu)dt +
+ af Gy, n)By(—Av, + Cuy)dn — aAf G(x, )By(uy + v )dE +
— a [ GO.mBetuy +vrdn - AB/E [ G erde +

+ B/E f G(y, n)dn. (36)
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For the elastic half-plane considered subjected only to its own weight and for
the notation given in Fig. 1, the general solutions of the associated homogeneous
differential equations are equal to:

B
uy =0, wy=0, Uﬁ=2ETA}’2+ﬂv v =c. (37)
Some comments should be given to the solution vj. It is the homogeneous
solution which corresponds to the non-homogeneous boundary conditions and it
represents the vertical displacements along every vertical line. In fact, this is also
a deterministic solution of our problem. Thus, in the deterministic analysis the
solution is the same as the boundary conditions, and the problem is a trivial one.
However, it is important in Adomian’s decomposition procedure, where half-plane
is limited by two vertical lines, and so the boundary conditions should be known
on these lines.
Green’s function G(y, ) for the second order differential operator Ly, for
given boundary conditions (elastic half-plane subjected only to gravity) can be
considered as a the so-called one-sided Green’s function and has the form:

Gy.n) =y —n. (38)

In the case of G(x, £) some limitations on boundary conditions must be im-
posed. This is so, because in the case of singular boundary conditions i.e. if x
approaches infinity, Green’s function, for the considered operator, ceases to exist.
It seems to be justified to assume that the horizontal displacements for x = 0 and
x =c¢ = const and for all y > 0 are equal to zero. In this case Green’s function
takes the form:

i(x—-a’) for0<é& <x
Go.6)=1¢_4 : (39)

7 x forx <&<c

Now, according to Adomian’s method, the unknown functions and their deriv-
atives with respect to x and y, are decomposed into a sum of undefined functions,
as follows:

ux,y, B) =uolx,y) +uix,y, ) +uslx,y, ) +... +
+unx,y, p) = _Zn:ui,

v(x,y, B) = volx,y) + v1(x,):.=0ﬁ) + vy, f)+...+
#onte,y. = Yo (40)
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Substituting (37), (38), (39) into (35), the following expression for the hori-
zontal component of the displacement is obtained:

X
2A(ug + uq +...+u,,)=f§(x — d)ugyy + ... +ttnyy + D(vary + . .. + Vngy)] ¥

—-d
xdE+fETx[“0yy+---+“nyy+D(”91Y+"'+U"‘y)]d§+

b 1

a’f%(x _d)ﬁ[—A(uﬂxx +... +ur|xx) + uﬂyy A +unyy +
0

d
—-d
X
X[—A(u(lxx+...+unxx)+u0yy+-..+unyy +D(Uﬂxy+...+vnxy)]d§+

X

+ af £(x —d)B[—A(ox + ... +unx) + Clugy + ... + vny)|dé +

waf55

xﬁx[—A(uQx +-. .+unx) +C(U0y + wa +Uny)]d§+

f% Bty + .ty + Ve U +
0
+af$d xﬁy(”ﬁy'*‘---'*‘uny+v0x+...+v,u)d§+
X
| ¥ y
+A2./.(y_n)(uﬂxx+---+unxx_Umy—...—vnxy)dn+aAf(y_n)ﬁx
X [A(u()xx +iz -+unxx) _uﬂyy = _unyy b D(Uﬂxj' +... -{—‘Uuy)]dn +

y
iaAf(y—n)ﬁx[A(qu+...+um)-—C(v0y+...+vny)]dn+

_aAf@_n)ﬁy(u0y+...+uny+v()x+...+Um)dn. (41)
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Since the functions u;(x,y, 8), vi(x,y,8) for i =0,1,2,...,n are still not
specified, it is possible to make the following identification:

24uy = 0, (42a)

X

d
—-d
24u; = f g— (x —d) (uoyy + Dvgyy) dE +f Sd X (uoyy + Dvgry) dE +
0 x
x d d
+af(x—'—d) %ﬁ(""Au(}xx”‘}‘UOyy +DU0xy)d£+af 5; XﬂX
0 x
X (—Augex + uoyy + Dvory) dé +af %(x —d)Bx x
0
f d
x (—Augx + Cugy) dé +af g; xBx (—Augx + Cuoy)dE +
x d d
o [ Ea—ap o +w ds+a [ E2% 180, +wods +
0 x

% y
+A2f (Y—n)(unxx—vuxy)dq+a,4f y —nB x
g 0
y
X (Auqgxx — Ugyy — Dvﬂxy)dn +O€A[ (v — n)Bx (Augx — CUOy) dn +
0

y
- aAf (v = n) By (uoy + vaedn), (42b)
0

.............................................................................
.............................................................................

.............................................................................

x d
—d
24u, = f T Uy f ; = Untyy + Don1.)dE +
0 x
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v

+ o x - d)ﬂy (un—l,y + vn—l,z)ds +

d
+ a xﬂy (un—l,y + Un—l,x)de =k

d

X
+ Olf g‘(x - d)ﬂ(_Aun-l,xx +un-1yy + Dvu—l.xy)df +
0
d oo
+ ﬂ'f 7 XP(—Aup_1xx +Up-1yy + Dvn—l,xy)dE +
xx ;:
+a [ S = DAt + Conor,E +
0
d
£E—d
+ af d xﬁx(_Aun_llx '+' Cvn_]_'y)dg +
xx
/
d
/

y
+ A f(y — M) Un-1xx — Vn-1xy)dn +
0
y
+ ad [0’ — MB(Aup_1,2x — Un—1,yy — DUn—l,xy)d"J +
0
y
+ “Af(y — mBx(Aup-1x — Cvp—1,y)dn +
0

¥
- “Af()’ —mByWn-1,y + Vn—1x)dn. (42n)

Similarly, the proper terms of the vertical displacements have been derived:

§ ;dxd$:| +

x d
o B |l [
2Av = 24a + 2y* — AB/E Lfd(x d)d§+f

b4
+ B/E f (v — n)dn, (43a)
0
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2A4v, = Azfd(x — d)(voyy — Dugxy)dé +A2f §- x(U[}yy Dug,y)dt +

+ aA[ =(x — d)B(Avgyy + voxx + Dugyy)dé +

+aAfE;

d
aAf =(x — d)Bx(uoy + vor )dé +rfo E—;éxﬂ,(uoy + v )dE +

d
x B (Avoyy + vaex + Duqry)dé +

+ aAf g—(x — d)By (Avgy — Cuqgy)d +

d
+aAf€;

X

y
d
xBy (Avoy — Cuge)dE + [ ) i+ Doty SN+
y
Y f & =) Bl=Any + s + Ditgay}in 4
0

f — ) By (—Avgy + Cug)dn +« f(y — n)Bx (uoy + vor)dn (43b)

.............................................................................
.............................................................................

.............................................................................

24y, = A f %(x — d)(Un-1yy — Dltn—1.5y)dE +

d
—-d
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+ “Afg'(x "‘d)ﬁ(AUn-l.yy + Un_1xx + Dun_1y)dE +
0

d
—-d
o O‘Af : d xﬁ(AUn—l,yy + Up—12x) + Dun—l.xy)d's +
x

it f 6 — DB n-ry + 1.0 +
0

d
—d
+ “Af ; 4 xﬂx(un—l,y + Vp_12)dE +

x d
+ aAf g(x —d)By(Avn_1y — Cup_1)dE +aAj § ;dxﬂy X
0 x

X (Avn_1,y — Cutn_1.2)dE +

. y
. +f(y - n)(Uu—l,xx + Du,,_l‘xy)dr, +af(y — n) X
g 0
X B(—Avy_1,yy + Un-1xx + Dn_1.4)dn +

Yy
+a f G~ B bt iy Ot
0
¥
t+a f(y —mbx (un—l,y + vn—l,x)d?]- (4311)
0

Thus, we have obtained two systems of the recurrent integral equations. Back
substitution of the terms in equations (42) yields an explicit representation of
these terms in the form of multiple integrals.

It should be emphasised that the series representation of the solution (40) is
meaningful only if it converges. According to Adomian’s remarks (1983), one can
expect that in the case of the normal probability density function of g, the sufficient
condition for the convergence of the series depends mainly on its coefficient of
variation. Baker and Zeitoun (1990) analysed the “mean square convergence” and
presented a solution which is valid up to @ < 0.5.

The system of integral equations (42) and (43) possesses a number of very
attractive properties. Each element of this system is given in terms of lower-order
terms only, and the assumption of the small fluctuation is not required. Instead
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of the stochastic differential equation there is a set of stochastic integrals to be
solved.

The deterministic solution

It is obvious that the problem is deterministic if the coefficient of variation of
the elastic modulus is equal to zero. Thus substituting @ = 0 into (27), Navier’s
well-known equations are obtained:

_Auxx +uyy + Dvxy = 0,
—A'Uyy + Uxx + Duxy = _‘B/E. (44)

From (42a) and (43a) we have:

B, 1B
=) 4— Ex(x —d). (45&)

Substitution of (45a) and its derivatives with respect to x and y into (42b) and
(43b) leads to:

1B
= -7 e -, (45b)

Repeating the above procedure gives all #; = 0 and the following sequence of
expressions determining v;:

1B, 1 B

vy = _Efy + Eﬁx(x —d), (45¢)
v3 = —3—12% 2_ %%x(x —-d), (45d)
vg = %% % %E';Ax(x —d), (45e)
s=rBp, 18, . (45f)

.............................................................................
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Substituting (45) into (40) gives the following expression for the vertical displace-
ments:

NN B - TR W W W S, FY
=erEY \27T8 TR TR T
{ £ ¥ T 1 1 )

B
+§x(x—d)(——+—+ ————— o

B ,
ATiITE T aTH =8+ g2 {16)

2EA

Of course, the so derived expression for the vertical (also horizontal) displace-
ment is the same as presented earlier i.e. the classical one (3).

Statistical measures

The final result, of the stochastic problem formulated in this paper, should be
some information concerning the statistical measures of the displacements and
eventually stresses. So, one is interested in finding expressions determining these
measures in terms of the corresponding statistical measures of input variables.
Statistical measures such as the mean and the correlation can be obtained in the
same manner as in the one-dimensional case. A framework for evaluation of the
average value and the variance of the vertical displacements was derived in part 1.

To obtain the solution for the means (u) and (v) the solution processes u and v
must be averaged over an appropriate probability space. Each term from (42) and
(43) can be calculated and ensemble averaged, without closure approximations.

Knowing statistical measures of displacements, statistics of stresses can be
determined, based on random function calculus and appropriate elasticity theory
relationships.

Unfortunately, the numerical calculations have not been carried out yet. It is
planned to perform more detailed analysis of the problem in the future.

8. Remarks and Conclusions

The random elasticity theory is applied to the statistically homogeneous elastic
soil half-plane subjected to gravity. The analysis is performed in the plane strain
state. Only the elastic modulus is considered to be uncertain and is treated as a
two-dimensional random field.

On the basis of Green’s function approach, the stochastic partial differential
equations governing the problem are converted into stochastic integral equations.
Then the perturbation procedure and Adomian’s decomposition method are ap-
plied. The first one imposes a small fluctuation assumption. The system of input-
stochastic differential equations with random coefficients is here transformed into
a few sets of stochastic differential equations with random forcing terms. The
average displacements obtained by the first order perturbation method are the
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same as the deterministic ones. The second order statistics, as a variance for ex-
ample, are presented in the form of the four-fold integrals. These integrals can
be computed only numerically, and the Monte Carlo method of integration is
recommended.

There is no small fluctuation assumption in Adomian’s decomposition method.
In this approach the solution is valid for the coefficient of variation of elastic mod-
ulus of up to 0.5. Adomian’s decomposition method is essentially the solution of
the stochastic Volterra equation by Neumann series expansion. The statistical sep-
aratibility is a major advantage of this method, so the closure approximations or
truncations are unnecessary here. The Adomian’s decomposition procedure en-
ables the finding of the explicit expressions for the statistical measures of stresses
and displacements, for example their average values and variances. Unfortunately,
in this method, high-order terms in expansions for # and v become increasingly
complex. Thus, the real test of usefulness of the method is whether or not low-
order terms provide significant improvement over the small fluctuation solution.

Although the numerical calculations were not performed, the presented ap-
proach offers the tool which can give quantitative results to the problem discussed.
It is planned to carry out more detailed analysis of the problem, generally based
on the numerical calculus.
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