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Abstract

The random elasticity theory is applied to the statistically homogeneous soil layer
subjected to its own weight. The modulus of elasticity is assumed to be a stochastic
process and the uni-axial strain state is considered. The governing elasticity equations
are presented in alternative ways, as a first order stochastic differential equation either
with a random coefficient or random forcing function and as a second order stochastic
differential equation. The solution is obtained by the approximated analytical meth-
ods i.e. perturbation procedure and Adomian’s decomposition method. First order
perturbation method is used to determine the variance function of the solution and
second order to find the average displacement. There is no small fluctuation assump-
tion in Adomian’s decomposition method. In a framework of this method the ana-
lytical expression defining the displacement as a stochastic process is presented. The
second order average solution and the variance of displacement are found, although
the explicit expression for the variance is found only for the first order solution.

1. Introduction

The theory of the homegeneous, isotropic elastic half-space has played an ex-
tremely important role in the development of foundation engineering.

Usually, the rigidity of soils increases with depth as a consequence of the
increasing effective overburden pressure. It has given a rise to a wide literature
on the non-homogeneous theory of elasticity, where the elastic parameters were
assumed to vary with the location of the point, deterministically (Gibson 1967;
Kassir 1972; Carrier 1973; Lomakin 1976; Oner 1990; et al.).

In nature, however, most soils intrinsically involve randomness and uncer-
tainty. Thus, one of the fundamental decisions is whether the model should be
deterministic or stochastic. Deterministic models are quite useful, but stochastic
models are more realistic. The difficulty has been that the stochastic models are
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very difficult to handle mathematically. Considerable effort has been devoted re-
cently in improvig the model associated with the material properties of a medium
by describing it as a stochastic process, or more generally as a random field. In
such a case, the elasticity theory becomes random and is governed by stochastic
differential equations. Although such equations have been studied and developed
by many researches in different disciplines of Physics and Engineering, only re-
cently attempts have been made to develop the theory of stochastic equations. In
fact, the field has not been sufficiently explored, and almost all the results that
have been obtained so far refer to very special situations.

Geotechnical problems, based on the random elasticity, do not generally yield
to exact analytical solutions. Thus, most of the paper focused on approximate,
numerical procedures, mainly on the stochastic finite element method. The as-
sumption of various degrees of severity are introduced (Bucher 1988; Deodatis
1989, 1990; Liu 1986, 1987; Shinozuka 1987; Spanos 1989; Yamazaki 1988; et al.).

Apart from numerical methods, a few approximated analytical approaches
are available for solving stochastic differential equations. Most commonly used
are perturbation or hierarchy methods, although they essentially limit systems to
small fluctuations. Only a few papers deal with the application of these methods in
geotechnical engineering. Zeitoun et al. (1988) applied the perturbation method to
solve some geotechnical problems governed by the equations of random elasticity.
However, they have evaluated the final results numerically.

The powerful approximated analytical method, without small fluctuation as-
sumption, is the decomposition method (called elsewhere the stochastic Green’s
function method). This approach has been considerably expanded by Adomian
(1983) and applied to random elasticity by Eimer (1972).

The aim of this paper is the application of the approximated, analytical meth-
ods in solving basic geotechnical problems in a framework of random elasticity.
A statistically homogeneous soil medium subjected only to gravity is considered.
An external loading will be taken into account in the next stage of the analysis.
It is worth emphasizing that the displacement of any particle of the soil medium,
subjected only to its own weight, has more of a theoretical meaning. In fact, the
displacements due to gravity has already occurred. In the case of uni-axial strain
state, the vertical stresses do not depend on elastic parameters, hence they are
deterministic. However, knowledge of displacements and their statistical measures
for plane strain analysis is necessary in order to determine the geostatical state of
stresses which has a stochastic nature.

In part 1, a statistically homogeneous horizontal soil layer and only a uniaxial
strain state is considered. The perturbation, as well as the Adomian decomposition
methods are applied. The govering elasticity equations are presented in alternative
ways, as a first order stochastic differential equation either with random coefficient
or random forcing function and as a second order stochastic differential equations.
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The second part deals with plane strain conditions, and again the perturbation
method and the Adomian decomposition procedure are incorporated.

2. Basic Equations

Let us consider an elastic, horizontal soil layer resting on a rough, rigid base.
The soil mass is assumed to be in equilibrium under the influence of its own
weight. It is assumed that the soil properties do not vary in a horizontal direction
and only Young’s modulus E varies with depth and is a homogeneous random
function of position E(z). The soil layer is presented in Fig. 1 for two different
co-ordinate systems. An analysis performed in this part will be consistent with
Fig. 1b, however, some advantages due to the co-ordinate system in Fig. 1a will
be visible in a further analysis of the problem.
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Fig. 1. One-dimensional strain state for a horizontal soil layer

The problem is one-dimensional and is governed by the following elasticity
equations: equilibrium equation

do
E =V (1)
constitutive equation
(1-v)
- A
el ( A+vd- 2v)) ’ @
geometric equation
_d» 5
P (
with boundary conditions:
o(0)=0, v'(0)=0 vh) =0, (Fig. 1a) (4a)

oh)=0, v(i)=0 v(0)=0 (Fig. 1b) (4b)
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where: o, ¢ and v are vertical stress, strain and displacement respectively and y
is the unit weight of soil.
Substituting (2) and (3) into (1) the following equation is obtained:

d?v
Double intergration leads to:
d
EA£=y2+C1, (62)
EAv = %y 22 +c1z +c. (6b)

In general the value y/EA can also be considered as a random field.
Taking into account boundary conditions (4b) the final expression for the displace-
ment is a trivial one:

EAv=y (% 22— hz) : (7a)

In the case of the boundary conditions (4a) the expression for the displacement
can simply be obtained by substituting transformation relationship z = h —2’ into
(7a):
1
EAv = 5V @? - h?. (7b)
Solution (7) is valid for a homogeneous linear-elastic medium, where E = const.

In a case of random elasticity, E(z) is a stochastic process, so the expression for
the displacement is quite different. The problem can be described alternatively:

(a) First order equation
Integrating equilibrium equation (1) and taking into account the first boundary
condition from (4b), vertical stress is obtained:
o=y —h). (8)

Substituting this stress into (2) and taking into consideration (3), the displacement
can be found from the first order differential equation:

dv
E@)A 2 y(@ —h) )

with boundary condition v(0) = 0.
(b) Second order equation

Having in mind that the modulus of elasticity is a function of z let us differ-
entiate equation (2) with respect to z:

do dE de
?Z-—A (—d; £+EE;) (10)
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and next including (3) and substituting (10) into (1) the second order differential
equation has the final form:
d*v(z)  dE@) dv(z) y

Ot @ =T (1)

Thus, we have obtained the alternative description of the problem either in the
form of two equations (8) and (9) or one second order equation (11). Equations
(10) and (11) are stochastic differential equations, because E(z) is the random
function.

The aim of the paper is to solve these equations i.e. to find some statistical
measures of the displacement like a mean value and a covariance function.

3. Characterisation of Uncertainty of the Modulus of Elasticity
It is convenient to present the modulus of elasticity in the following form:
E@) = E[1+a B@)] (12)
where:

E = (E) - mean value of the modulus of elasticity,

o — coefficient of variation,

B(z) - one-dimensional, normalised stationary process with expected
value (B(z)) = 0, standard deviation og = 1, and a given cor-
relation function Rg(7), (t = |21 — 22).

The correlation function must be differentiable. In further analysis the following
correlation function is assumed:

Rg(r) = (14 Alz))e~"! (13)

where A is a correlation distance.

4. The Perturbation Method

If the random variations of the soil properties are sufficiently small so that cor-
rections to the deterministic solution are of a low order, then the perturbation
theory is useful in solving the problem. Some numerical analyses show that this
type of solution is valid if the coefficient of variation of the modulus of elasticity
« is less than approximately 0.1 to 0.15.

In this section the perturbation technique will be applied to solve both the first
and second order stochastic equations. The second order perturbation method will
be applied in order to find an average solution, and the first order perturbation
procedure to find the variance of the solution.

The first order stochastic equation will be presented in an alternative way
either as the equation with random coefficient or with random input.
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4.1. First Order Stochastic Differential Equation with Random Coefficient
Substituting (12) into (9) one obtains:
= d
EAll+e p@]Z =y —h). (14)

Expanding the unknown function v(z, @) in powers of «, and taking into account
only the second order terms, one can write:

vz, @) = w() +a v @) + o nE), (15a)
dv(z,a) dw() dvi@) 5 dwn@)
& - & "Ta Vg o)
= 2 -
where: v(z) = v(z,0), v1(z) = Mi;'—ﬁ, n(E) = Bv_(zf;:i_—ﬁ.
Substituting (15b) into (14) leads to the following expression:
EAQ +a B)(v)+a v +a’vy) = y(z —h). (16)

Equating coefficients of like powers of o a set of the following equations is ob-
tained:

1. Edvy=y@E—h), (17a)
2. EA(;+B8v) =0, (17b)
3. EA@,+Bv)=0. (17c)

Equation (17a) is deterministic and its solution is the same as (7).
In order to solve equation (17b) let us substitute (17a) into it and rewrite in
the form:
EAvi(z) = -y — h)B(@2). (18)

The unknown component of the displacement vy can be determined by integrating
both sides of (18):

By, =—p f & —W)PE)E. (19)
0

Substituting expression (19) into (17¢) yields:
EAvy2) = y(z — B @) (20)

Thus, the unknown component v, can be presented as a stochastic integral in the
following form:

) f & — B E)dE. @1)
0
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Substituting (7), (19) and (21) into (15a), the following expression for the dis-
placement is obtained:

_ 1 z z
EAv=y (5 Zz—hz) =ay f(E—h) BE)dE + o’y f(f;‘—h) B )ds. (22)
0 0

Now the statistical measures of the approximate displacement v can be determined
by standard calculations. In particular the mean or average value is:

_> (1.2 2
(v)_ﬁ(ZZ hz) 1 +a). (23)
The second order expected value vs depth is presented in Fig. 5 for o = 0.1.
Also presented is the average solution obtained by the Adomian decomposition
method.

It seems to be reasonable to apply the first order perturbation method to
determine the second order statistical measures. In such case, only equations
(17a) and (17b) can be considered. The general expression for an autocovariance
function is as follows:

Ry(z1,22) = ([v(z1) — ¥(z1)] [v(z2) — T(z2)]) =

2 Z F43
_ (v = _ _
= ( B A) ( Of & —h) B(E)dE Of & —h) ﬁ(é‘)d5>—

2 Z1 22
_(oy has s _
= ( = A) < Uf Of & —h) (1 —h) ﬁ(S)ﬁ(n)dEdn>
5 2 22
_(ay e _
— ( = A) f f & —h)(n — ) (B&) Bn))dEdn =
00
2 Z1 In
= (&Y _ . "
- ( 2 A) Of 0[ (& —h)(n — h) Re(& — n)dtdn. (24)
Substituting the covariance function given by (13) into (24) yields:
Ro(z1,22) = (@ 1)? f f & =m0 — YA+ Mg —nl) e dgdn,  (25)
00

The double integration must be performed over a rectangular area as shown in
Fig. 2. The integral for the area where & > 5 is as follows:
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z, E<n /”‘
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%

Fig. 2. The rectangular area of integration of (25)
E=zy n=£
I= f f & — B)(n — ) [1+ A& — )] e ¢V dedy (26)
£=0 n=0
and for the area £ < n one has:
&=z n=23
= f f & —h)(n—h) [1+A(n — £)] e Ddedn. @)
£=0 n=0

Eventually, the expression for the covariance is as follows:

2 2
4 4h 4h 1 /5
R = (42) {£2- 24+ L an ) (5-9)+

EA 31 A A2 \ a2
+ [3)%2—%—%(%+-37h-h2) Z1—%(h+%) zf]e‘“‘+
%i—-%—%(%+%—h2) 22—%(h+%) z%]e‘“2+
+[z%zz-zlz%—%z1zz+(%+37?—h2) 72— (_}:5_2_3{'__}12) x
x 21+ z1+(%—h) z%+(%+h) z%+%—¥]x
. e—un—m} . (28)

The variance of the displacement can be obtained from (28) for z = z; = z3:

2 %
o y2 4 3 4h 6h 4h
v = (55) {52 -(3+%) #+ (7 +5) =
10 6k [3112 5 1 (5 3h 2)
= + h* ) x

MR A M a2
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X z—%(h+%) zz] e—*’-}. (29)

The variance of the displacement for # = 10 m and different values of the cor-
relation distance A is presented in Fig. 3.
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Fig. 3. Variance of displacement vs depth

It is seen from Fig. 3 that the variance of the displacement assumes the highest
values for decreasing A, e.a. increasing correlations. In the limiting case it is max-
imum for the random variable model (full correlation).

Fig. 4 presents a coefficient of variation of the displacement for « = 0.1 and
different values of the correlation distance A. This coefficient is calculated for the
second order expected value (23) and it approaches zero for z = 0 whereas it
reaches maximum for z close to zero.

From (28) and (29) it is seen that the random function of the displacement is
not homogeneous.

4.2. First Order Stochastic Differential Equation with Random Input

Let us again consider equation (9). Dividing both sides by FE it can be rewritten
in the following form:
‘ dv 1 y

Substituting (12) into (32) one gets:

4y | iad o Reo
dz_E(1+aﬁ)A(z h). @D



62 J. Przewlocki

012
oM ;

, U.E;EN\‘-:—-‘__‘-H—_
\
Y

008
007
= i
s 006

g o.us‘g <

0.04 ] ~—

5 003" e A=10

§ 002
§ oo

0
o .

=
r
@
-
o
;p.
~
an
w
8

Fig. 4. Coefficient of variation of the displacement vs depth

It is seen that in equation (31) the randomness, represented by 8, occurs only
in the forcing function, thus the equation can be classified as the random input
stochastic differential equation.

Now, let us introduce a new random variable w defined as follows:

P
Edl+ap)

In fact, w is a random function or stochastic process w(z) because B(z) is also
a stochastic process. We are going to determine its statistical parameters, in par-
ticular a covariance function. Unfortunately, an exact determination seems to be
impossible, as the formula (32) presents a non-linear transformation of random
functions. However, a simple solution can be obtained in a framework of second
order correlation analysis. Instead of random function B(z) we will consider two
random variables B; and B, characterised by the bivariate normal probability
density function:

(32)

— 2
g 1 y . 1 p1— A
fBr, ) = TP gy 1720 =) ( OB, ) i

-\ 2 —_ =
+(ﬁz—ﬁz) BB B-B || 3)

T, 08,08,

The random variables B; and 8, correspond to the states of stochastic process
for two locations z; and z», i.e. B1 = B(z1) and B = B(z2). Of course the expec-
ted values and variances of those two variables are identical and the covariance
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between them can be determined by substitution of the given values of z; and z;
into the covariance function.
For the covariance function (13) assumed in the paper we have:

Cov[By, Bo] = (1 + A2y — z2|) e 7M1~ (34

and the probability density function is as follows:

fBr. B) = Zm l 2(1—r2) I:(ﬁl) _Qrﬁ;—fz+(%2_)2:“ (35)

where: 0 =0, =05, =1, 1 =B, =0,7 = (1 + Alz; — z3]) e M7,
Now we want to find the probability density function of the variables w; and wj.
This is a problem of two functions of two random variables:

1 1
W ==, W) = =—. (36)
El+ap) E(l+a B)
The Jakobian of the transformation is as follows:
dw; % 1 —o 0
7_| 9 9 |_| Ed+ap)? _
B Y ol ARG W I
B B E(+a p)?
1 o
= — i 37
E> (I+ap)? A +a p)? 37
The probability density function of new variables (36) is defined as:
flwy, wo) = m f(B1, B2). (38)
Substituting (37) into (38) one obtains:
fwy, wp) = Ez(l +a 1) 1 +a B)? ; X
" 2/T—12
xexp| -5t (B0 - 2pm+ a1} @9

Finding from (36) the inverse relationships:

1/ 1 1/ 1
mealEm ) wma(me) s
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and substituting them into (39), the following expression for probability density
function is finally obtained:

PRSI i 1| U
e 27rw1HJ2\/1—r! - a? | \ Euy

() )+ @

Now, the statistical measures can be computed from the following formulas:

& =[f wy f (wq, wp) duwidwy, (42a)
w2=f[ wy f(wy, wy) dwidws, (42b)
Covfun, wal = [ f (w1 — (w2 — B fQwn, wp) dwndwy.  (42%)

—00 —00

The covariance between variables w; and w2 can be computed in an easy way
by the linearization i.e. first order approximation method. Application of a well
known approximating formula:

2

1 %> dwy 0
Covlwy, wy] = 5 ZE a‘;fl 31;,2 Cov[f;, B (43)
i=1 =1 i

leads to the final expression for the covariance in the form:

2
Cov[wy, wa) = ;:-2- Rp(ZI —Z7). (44)

Now let us go back to the basic random input stochastic differential equation
(31). It can be rewritten in the form:

z —-hw) (45)

where the covariance of w(z) is given by (44) and the first order approximation
of its average value is:

(46)
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The solution of (45) can be obtained directly in the form of a stochastic integral:
z
o=t [ E-m e as. @)
0

The average value of the displacement is as follows:

o2 fe- _¥ [ Ezh v (1,
v—<A Df(g h)w(s)dg>_Af . d!;‘_EA(zz hz) (48)

0

and is of course the same as the one computed before (19).
The covariance between the displacements at two locations is:

Ry(z1,22) = Cov[vy, v2] = ((v1 — U1) (v2 — 12)) =

F41 1
- ([:’; f(g — hyw(E) dgg—A (5 zf—hzl) x
0 -

z
1
x [:};7 f(n —h)w(n)dn — é (5 z - hzz) > =
0

2 Z1 22 ) .
- (114) ff(E —h)(n —h)(w(E)w(n))dédn — (57) (EZ% —hzl) %
0

0

Z1 22
1 2
x (Ezg —hZZ) - (%) f f (& — h)(n — h){Cov[wi, wa] +
00

2
— ¥y 1 1
— Wwp} — (_EA) (Ezf —hzl) (Ez% —h22) =

221 4]
_(re e
- (E A) Df Uf & —h)(n — K)(BE)BMm))dedn. (49)

Thus, we have obtained the same formula for the covariance as (24).

4.3. Second Order Stochastic Differential Equation

Now let us consider the equation (11) with boundary conditions (4b).
Substituting (12) into (11) one obtains:
dv d dv Y
[1+ep@]— + Ll te bl = 7 (50a)
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or
d*y d2 dﬁ @dv vy

d2+ﬂﬁ() T B Ea (50b)
Now, it would be convenient to use an operator notation. Defining the determin-

istic operator:

d2
L= ) (51)
and the stochastic one:
d? dp(z) d
R=a ﬁ(z)m +a 4 (52)
The equation (50b) can be written in the operator form as follows:
Lv= £ — . (53)
EA

Limiting our consideration only to the first order perturbation method the un-
known displacement can be presented as before, i.e. (15a). Substituting it into
(53) leads to:

14
Lvg+a Lv = — Ry —a Rv 54
vo 1= 0 15 (54)

Equating coefficients of like powers of a a set of two recurrent equations is
obtained:

Y
W= (55)
1
2. Ly = . Rvg. (56)

For the general differential operator L, its inverse L™ is an integral operator with
a kernel G(z, £), so that the solution of equation (55) can be written in the form:

=B f GG, §) EE’—A de (57)
0

where: 9 is the solution of the homogeneous equation Lvy = 0, and for the bound-
ary conditions (4b) 8 = 0, G(z, &) is Green’s function.

For the deterministic differential operator (51) and given boundary conditions
(4b) Green’s function may be presented in the form:

—& for 0<£ <z,

—z for z<é& <h. (54)

GGz, §) = {
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Substituting (58) into (57) one obtains:

o g g w)
0

Again, it is seen that so determined displacement is identical as (7) or (19).
The solution of equation (56) can be written as follows:

dzvo dU{)
e AGE - T

v = . L%y = —/ Gz, 8) [ﬂ(l;')
o d§

Differentiating (59) with respect to z and substituting z = £ we have:
dvy d?vgy y
—_— e (£ — —_— = = 61
d¢  EA 746 P d§>  EA e
Substituting (61) and (58) into (60) the final expression for the second component
of the displacement v; takes the form:

z h
Vi =g { f [EBE) + B (§)6(6 —h)dE + f [zﬁ($)+ﬂ’(§)z(§—h)]d§]. (62)
0 z

It is easy to find that the average value of 7; is equal to zero, thus the average
displacement is equal to its deterministic value i.e. 7 = vp. In the case of the
second order perturbation procedure, the average displacement is the same as
the one obtained before (23).

In order to determine the covariance between the displacements at two loca-
tions z; and z, let us rewrite (62): '

o) et [ f [E8(E) + B ©)EE — h)]dE+

i f [218) + B/ ©)z1 (€ —h)]dE]. (63a)

v(22) = EL I[[&ﬁ(&) + B €)EE — m)dE+

h
v f [Zzﬁ(§)+ﬁ'(§)22(’g'—h)]d€]. | (63b)

z2
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The general expression for the covariance can be presented in the form of the
sum of the double integrals as follows:

Cov[v(z1), v(22)] = {[v(z1) — TD][v(22) — T(z)]) = a*(v1(z)v1(22)) =

E=z1n=n2 E=z) n=22
= ( ) f f En(BE)B(m)dedn + [ f Enin — k) (BE)B'(m)dEdn+
£=0 n=0 £=0 n=0

£=z1 n=h &=z1 n=22

+ [ f 22€(n — ) (BE)B (m))dEdn + f f En(E — h)(B'(€)B(n))dEdn +
£=0n=2; £=0 n=0
E=z1 n=1 §=zy n=h

+ f f En(n — h)(B'(€)B' (m)dEdn + f f 2E(E — h)(B'&)B(m)dEdn +
£E=0 n=0 E=0 n=22
é=z1 n=h E= n=h

+ f f 2EE —h)(n — h) (B ©)B(n)dEdn + f f 22k (BE)(m)dEdn +
£=0n=22 §=0 n=22
&=h n=h §=h n=h

+ f f 2122(€ — h)(B'(€)B(m)dEdn + f f 212200 — B) (BE)B'(n))dEdn +
E=z1n=22 §=z) n=n2
§=h n=z; E=h n=n;

+ f f 2 — b (BE)B ()dEdn + f f Zin(E —h) (B ©)B(m)dEdn +
E=z; n=0 §=z n=0
&=h n=n E=h n=h

+ f f 20 —h)(n — B)(B' ) (m)dEdn + f f 2122(BE)B(n))dEdn +
E=z1 n=0 E=z1 n=22
E=h n=h

3 [ f 2za(E —h)(n — B)(B'(€)B'(m)dEdn +

E=z\ N=ny
E=h n=z;

+ f f 2n(BE)B())dedn |. (64)
E=z; n=0

Appearing in (64) average values, according to an assumed notation, are just the
covariance functions of stochastic process (z) and its derivative p’(z). For the
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covariance function defined by (13), the particular covariances are found to be:
/ d it
(B()B (M) = Rgp (v) = _E[Rﬁ(r)] = AZge™", (65a)

(B'(E)B' (M) = Ry (z) = A*(1 — Ar)e™ (65b)

where: t = |£ — n|.

All integrals appearing in (64) can be easily determined either numerically or
analytically, although the second way is time consuming. Nevertheless, it seems
that the final result i.e. the covariance function should be the same as the one
calculated for the first order stochastic differential equation (28).

5. Adomian’s Decomposition Method

The compilation of statistical soil data shows that the coefficient of variation of
the elastic modulus may be even as high as 0.5. Evidently therefore, the small
fluctuation approximation does not provide a solution which is valid in the entire
range of practical interest. There is no assumption concerning the size of the
randomness in the Adomian’s decomposition method. Adomian has proposed
expressing unknown function v(z) in the stochastic Volterra equation and then
assuming the solution can be decomposed into components to be determined
in a manner to be discussed. We shall see that the method is very convenient
computationally and offers some significant advantages.

The stochastic differential equation (50b) can be changed into the stochastic
Volterra integral equation with a kernel G(z, £):

v(Z) = L'lLv(z) =1y + L‘IE}/—A — L”lﬁ}iv(z} =
=w+ [ Gt gt - [ Ge.omeus (66)
where: vy is the solution of the homogeneous equation Lv = 0 and has been
found to be equal to zero.

Substituting the expression defining stochastic differential operator (53) into (66)
leads to:

_ Y _ " ' ’
ve) = 2 f G, t)dE —a f G, OBEV'E) + FEVEME.  (67)
The double integration of (69) by parts yields:
ve) = £ f G, £)dE — a [Gz, E)BEW E) — Gz, E)BEWE) +

+ fG”(z,’s‘)ﬁ(E)v(E)d&+fG’(z,E)ﬂ’($)v(§)dE]]- (68)
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The lower and upper limits of integration are 0 and & respectively, and the deriv-
atives appearing in integrands are with respect to &. The first derivative of Green’s
function defined by (58) is as follows:

dG(z,!;')z{—l for 0<£ <z,

Gz, ) = dE 0 for z<é&<h.

(69)
It is seen from the above expression that for £ = A, the derivative of Green’s
function G'(z, h) = 0. According to the boundary conditions (4b), we have v'(h) =
0 and v(0) =0, so G(z, 0) = 0. The second derivative G"(z, §) is, of course, equal
to zero. Thus, some terms appearing in (68) vanish. Taking into account the above
considerations, substituting (58) and (69) into (68), and integrating its first term
yields:

_ ¥ fla ~
v(E) = = (22 hz) +a 6/ B (E)v(&)dE. (70)

Now, let us assume that the unknown function v(z) can be represented as the sum
of undefined functions as follows:

v(z) = v0@) + ) _ v, w) (71)
i=1

where: o is a realisation parameter, characterising randomness,
vp(z) is a deterministic solution (7a).
Since the functions v;(z, w) are still not specified, it is possible to make the fol-
lowing identification:

vz, 0) = a f B/ )0 €)dE,
0

i di=a f B &1t w)dE,
0

.............................................................

vl ) = f B €)vn_1 (€, ). (72)
0

The system of integral equations (72) possesses a number of very attractive
properties. Each element of this system is given in terms of lower-order terms
only, so the procedure does not require a closure approximation. The derivation
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of equations (72) requires no assumption about the nature of the random func-
tion E(z). The series representation of the solution (71) is meaningful only if it
converges. Adomian (1983) as well as Zeitoun and Baker (1990) have proved that
the expansion converges (in the mean square sense) if the coefficient of variation
of the elastic modulus is less than 0.5.

Back substitution of the term v; in equations (72) yields an explicit represen-
tation of these in the form of multiple integrals as follows:

_ve [ (Lo
v1(z, w) = EA_D[ﬁ(E) (25 hE)dE,

z &
2 1
nie. ) = - [ f B )8 () (Enz —hn)dfdn,
00
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n
v,,(z,a))zy_ﬂf f
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It is seen that high-order terms in the expansion for v(z), become increasingly
complex and are quite difficult to evaluate even numerically. A real test of the
usefulness of the Adomian procedure is therefore whether or not low-order terms
of the expansion provide significant improvement over the other methods. Thus,
some error analysis must be performed. This is however not in the range of the
present analysis.

The average solution

In the paper, only the first three terms of the expansion are taken into account.
Formally, it is called the second order solution because the first terms is given as
the deterministic solution.

Substituting (73) into (71) yields:

) Bl
”("""’)"EA(ZZ e +EA0 p&) (67— he ) de +

z ¢
ya? ierg'om (L2 — )
T Of Of § @8 (g7~ hn) dedr. (74)

Taking the expectation of (74), we obtain:

n=z §=n

- - __l:_ l 2_ 2.[ /. 7 7
v(2) = (v(@2)) = o (22 hz) +a (B (&) (m) x
n=0&=0
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X (%52 - hg) dgdn] , | (75)

The expectation appearing in the integrand of (75) is just the correlation func-
tion described by (65b). After substituting (65b) into (75) and integrating the
expression for the second order average solution finally assuming the form:

- Y 1, }’C‘f2
v(2) 7 (2z z)+ 7 @) (76)
where:
_1 2 2 4 2h 2 2h R
K(z)_zz +(I_h)Z+A2_T+|:(1_h)Z+ X —ﬁ]e ¢ (77)

The second order average solution for @ = 0.1 and different values of the
correlation distance A is presented in Fig. 5. Also shown are solutions obtained
by the first (deterministic) and second order perturbation method.

Depth 2 [m]
= B TR
50 second order perturbation
45 ! b
40 Adomian A=10 —
first order perturbation -
35 +
= /7 \ A.=01 Adomian
A=1 Adomian

Average displacement *(g/EA)
r
a

Fig. 5. The average displacment vs depth

The average displacements, calculated by Adomian decomposition procedure,
both for a small (A = 10) as well as high correlation (A = 0.1) converage to the
perturbation solution. Some discrepancies can be seen for A =1,

Variance of the solution

The variance function of the displacement is defined as the expectation of
the squared difference between displacement and its average value. Taking into
account only the first two terms of expression (74) and the first one of (75), the
first order variance function can be obtained. It can be presented in the following
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form:
o g N=Zé=n 1 1
vare)] = (55) [ [ @@san (38 -nt) (37 —hm) dean =
n=0&=0
ya -
- 2(_—A) H() (78)
where
s = - (L8 (B ) (S0 - 2)
H(z)-—sz —(3A+2)z +(A+ 2)2 + A4+l3 732 +
=2t 3+(i—£+h2 z2+(—i—£+&z-) +
* (nzz 22 % BT )?
5 h  5h%\7 _
e (_1_4—15+'2ﬁ)]e A'z}. (79)

The first order variance, obtained by Adomian decomposition procedure,
turned out to be too high (two to four times higher) as compared with the one ob-
tained by perturbation method. Thus second order variance must be considered.
Taking into account (74) and (75), the variance function, after some transforma-
tion, can be presented in the following form:

E=z n=£ b=z =5

2
Var[v(z)]:(Z—Z) K(z)——azH(z)+a2ff[fx

£=0 n=05=0 =0

1
x (B'E)B' B (8)B'(¢)) G n? — hn) (532 - hs) dg-'dndads}SO)

In the derivation of the above expression, it was assumed that the probability
density function of the elastic modulus is normal. In such a case, an expectation
appearing in the integrand of the expression (80), for the Gaussian case, can be
given in the form:

(B'E)B' (B B)B (&) = (B'E)B M) (OB (&) +
+(B'E)B' (B (B (&) + (B €)' (&) (B (B (8)). (81)

Taking into account (81), where the general expression for covariance is given
by (65b), the four-fold integral in (80), can be determined even in an analytical
way. Unfortunately, the framework for the evaluation of the variance of the solu-
tion was derived without the presentation of numerical results. It is, however,
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worth noting, that the variance of displacement caluclated by (80), neglecting the
term involving four-folded integral, was found to be at most twice the one obtained
by perturbation procedure. Thus, the standard deviation of the displacement is
not higher than 50%.

6. Conclusions

The random elasticity theory is applied to the statistically homogeneous soil layer
subjected to its own weight. In this part, only the modulus of elasticity is assumed
to be a stochastic process and the uni-axial strain state is considered. So, the
problem is one-dimensional and is described by a stochastic ordinary differential
equation. The governing elasticity equations are presented in alternative ways, as
a first order stochastic differential equation either with a random coefficient or
random forcing function and as a second order stochastic differential equation.

The solution is obtained by approximated analytical methods i.e. perturbation
procedure and Adomian’s decomposition method. Under the assumption of small
fluctuation. (coefficient of variation of elastic modulus less than 0.15), first order
perturbation method is used to determine the variance function of the solution
and second order to find the average displacement.

There is no small fluctuation assumption in Adomian’s decomposition method
and a solution is valid for the coefficient of variation up to 0.5. In the framework
of this method the analytical expression defining the displacement as a stochastic
process is presented. The second order (first three components of the decom-
position are taken into account) the average value is found. Also second order
solution for the variance of the displacement is determined, although the explicit
expression is found only for the first order solution.

For a given boundary problem and considered values of parameters char-
acterising uncertainties, the average displacements obtained by both methods as
similar and converge to the deterministic solution. In the case of variance function,
the first order Adomian’s decomposition procedure significantly overestimates the
results and the variance of displacement is up to four times higher than the one
obtained by perturbation procedure.

The paper may be treated as the introduction to the application of approx-
imated analytical methods into the geotechnical analysis, where the subsoil and
acting loadings are, in general, random. In particular, it aims for a fast and rough
estimation of soil behaviour in different conditions and one or two-dimensional
schematization of reality. The Adomian’s decomposition approach presented in
the paper seems to be a powerful and convenient tool for such analysis.
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