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Abstract

The paper is devoted to some aspects of the Monte Carlo technique in stochastic
FEM for soil mechanics. Sample size, “total cutting” in covariance matrix, problems
of symmetry, grouping of elements and the comparison between “point” and local
average discretization are analyzed.

1. Introduction

The first part of this work was focused on problems of discretization of two
dimensional continuous random fields in stochastic FEM for soil mechanics. The
theory of local averages was incorporated to map the initial continuous field into
discrete, finite random variables of soil property (Rézyfiski, Knabe 1993). This
part concentrates on problems encountered in the application of the Monte Carlo
technique in stochastic FEM.

1.1. Random Fields

The investigation was carried out for a gaussian first order Markovian, homo-
geneous and isotropic random field representing the modulus of elasticity of a
soil stratum for a plane strain condition. The stratum is subjected to determinis-
tic load of one or three vertical forces. Together, the stratum and forces form a
symmetrical problem. The field E(x, y) has the following parameters:

(I) mean E

(IT) variance o}

(III) exponential correlation function between two points “1” and “2” of the field:
p(d) = exp(—pd) (1a)

where:

d = /(2 —x0)? + 03 — ) (1b)
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and B is the parameter of correlation decay.
In numerical calculations F, ag and deterministic Poisson’s ratio v were con-
stant and equal to:

; E = 30 MPa,
i‘ of = 56.25 MPa?, thus o, = 7.5 MPa,
v=10:25,

The values of E and v are characteristic for non-cohesive soils depending on their
' densities or cohesive soils for which the moisture content is close to their plastic
limit. The value of the standard deviation o, indicates that the field can vary
greatly throughout the stratum, which is typical of soils.
The values of B cover a wide range of variability in order to simulate different
random fields which are either highly, poorly or medium-correlated, and equal to
0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 2.0, and 4.0.
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1.2. Soil Stratum Geometry, Loads and Meshes of Elements

‘ The stratum is H = 20 m thick. As the analysis concerns mainly the displacements
i of loaded nodes the length in the analysis was assumed to be only 1.41 times longer
(L = 28.28 m) than H. Its extention improves little the results in the vicinity of
the vertical symmetry line no matter what mesh is examined. '
\ The basic load variant is one vertical force equal to 1 MN placed symmetrically
on the surface of the layer. Some other calculations were also performed for a
' variant of three vertical forces of 1 MN each, which also form a symmetrical issue.
: This variant was utilized to establish the sample size of the Monte Carlo technique
§ that was adapted to the stochastic FEM.

Two homogeneous meshes of practically square elements were used in order
to obtain and compare the results:

1 (I) 10 x 7 elements,/ = 2.828 m,t = 2.857 m, known as mesh A (large squares).
‘ The calculation results for both load variants were examined for this mesh.

(I1) 14 x 10 elements,/ = 2.02 m, ¢t = 2.0 m, known as mesh B (small squares).

l Both meshes, load variants and boundary conditions are shown in Fig. 1a, b, c. It
i is easy to see that the top node lying on the vertical symmetry line is common for
both meshes and can thus be used for comparison of the results. Deterministic
i calculation results of vertical displacements of this node are:

— mesh A, one force load v = —0.069298 m,
— mesh A, three force load v = —0.1236 m,
— mesh B, one force load v = —0.07612 m.

In additionally, vertical displacements of neighbouring and loaded nodes for three
force load and mesh A4 were equal to —0.1130 m.
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«— 5x2.828 —> | «— 5x2828 —

7x 2.857

Fig. 1a. Mesh A, one force load

Fig. 1b. Mesh A, three force load
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«— 7x2.02 —> | «— 7x2.02 —>

10x2

Fig. 1c. Mesh B, one force load
2. Stochastic Calculation

Stochastic calculation embraced a wide range of problems such as (Rézynski
1992):

(I) sample size,

(IT) “tail cutting” of the covariance matrix of local averages over finite elements,
(III) stochastic FEM for symmetrical problems,
(IV) grouping finite elements into larger local averages,

(V) comparison of the “point” and local average discretization results of the
random field.

All these issues are discussed below basing on the analysis of the displacement
distribution parameters of loaded nodes.

2.1. Sample Size

Strong variability of the soil medium imposes a large sample size, the larger, the
more exact estimates of solution are to be received. Higher order parameters, like
third central moment, need further increase of the sample size.

In our calculations, the sample size was assessed for the mesh 4 and three force
load. It is obvious, that deterministic FEM symmetrical loads result in identical
displacements in relation to the line of symmetry. Thus, the ratio:

Me
R() = Ar:;t 2)
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of the distribution parameters of these displacements should be a good measure
of the accuracy of the sample size. The results of the investigation are presented
in Table 1.

Table 1. Sample size for mesh A

B E[v] oy R(E[v]) | R(oy) | sample

left right left right size
0.1 | —0.1186 | —0.1188 | 0.02484 | 0.02470 | 0.998 | 1.006 | 3000
0.2 | —0.1182 | —0.1179 | 0.01755 | 0.01685 | 1.003 | 1.036 | 3000
0.3 | —0.1164 | —0.1165 | 0.01283 | 0.01266 | 0.999 | 1.013 | 3000
0.4 | —0.1159 | —0.1161 | 0.01051 | 0.01067 | 0.998 | 0.985 | 3000
0.5 | —0.1152 | —0.1152 | 0.00885 | 0.00865 | 1.000 | 1.023 | 2500
1.0 [ —0.1141 | —0.1142 | 0.00488 | 0.00502 | 0.999 | 0.972 | 2000
2.0 | —0.1134 | —0.1135 | 0.00257 | 0.00273 | 0.999 | 0.941 | 1500
4.0 | —0.1131 | —0.1131 | 0.00140 | 0.00137 | 1.000 | 1.022 | 1000

The results from the above table indicate that the sample size should be con-
siderable, to ensure accuracy of standard deviations. However, the sample size is
far too small to guarantee accuracy of estimates of higher order parameters. This
is shown in Table 2 where estimates of the third central moment w3, obtained for
the sample size given in Table 1, are shown.

Table 2. Estimates of w3 for sample size from Table 1

B U3left M3right R(u3)
0.1 | —6.086 %1073 | —4.815 % 107> 1.264
02| -1.076 ¥ 1073 | —5.762 x 10~6 1.867
03| —1.661 %1075 | —1.384 % 10~° 1.200
0.4 | —8.490 %107 | —7.900 x 10~7 1.075
0.5 | —4.630%10"7 | —4.040 x 10”7 1.145
1.0 | —4.300 % 1078 | —5.500 % 10~8 0.782
2.0 | —2.100 % 10~? | —4.000 x 10~? 0.512
4.0 | not computed | not computed | not computed

An increase of accuracy in the estimates of u3 could be attained for much
greater sample sizes. This, however, is not very likely at least for standard PC
equipment, because very large samples require too much computer time. Never-
theless, it is worth computing even inaccurate estimates of w3, as they are accurate
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enough to state whether the distribution received can be treated as gaussian or
not. In our case all values of u3 are negative, therefore the distribution of the
displacements is evidently non-gaussian.

2.2. “Tail Cutting” in the Covariance Matrix of Local Averages

In stochastic FEM, the continuous random field should be transformed into dis-
crete, finite random variable by the theory of local averages. In this approach,
finite elements are associated with the random field local averages and their vari-
ances and covariances are obtained by either analytical or numerical integration,
described in detail in Part I. Intuitively we know that the covariances of remote
local averages are close to zero and their influence on the final results of the
Monte Carlo simulation should be insignificant. It may thus seem at first glance,
that we can simply reduce these covariances to zero. However, this is not always
permissible.

Numerical experiments were performed for the covariance matrices of local
averages in which the covariances less than 10% of the local average variance o7,
were reduced to zero. An attempt was then made to diagonalize these matrices.
Unfortunately they all lost their positive definiteness: some elements of the diago-
nalized matrices turned out to be negative and an ordinary simulation procedure
ceased to work. It had therefore to be modified by extorting the semi-positive
definiteness of the covariance matrices. The details of such a modification can be
found in (Wilde 1981).

Table 3 contains the results of calculations for a one force load, mesh 4 and
both types of covariance matrices: with and without “tail cutting”.

Table 3. Influence of “tail cutting” on stochastic FEM results mesh A, one force load

without “tail cutting” | with “tail cutting” errors
B E[v] oy E[v] oy E[v] oy
0.1 | —0.07298 | 0.01562 | —0.07311 | 0.01578 | +0.20% | +1.0%
0.2 | —0.07223 | 0.01204 | —0.07192 | 0.01188 | —0.40% | —1.3%
0.3 | —0.07156 | 0.00988 | —0.07155 | 0.00967 | —0.01% | —2.1%
0.4 | —0.07152 | 0.00837 | —0.07121 | 0.00813 | —0.40% | —2.9%
0.5 | —0.07118 | 0.00746 | —0.07085 | 0.00695 | —0.50% | —6.8%
1.0 | —0.07024 | 0.00435 | —0.06975 | 0.00413 | —0.70% | —5.1%
2.0 [ —0.06957 | 0.00235 | —0.06959 | 0.00216 | +0.03% | —8.0%
4.0 | —0.06939 | 0.00125 | —0.06935 | 0.00121 | —0.05% | —3.2%

We can see from Table 3 that the “tail cutting” influence is rather small. In
most cases, the distribution parameters for simulations including “tail cuting”, are
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slightly underestimated (negative error signs). In a few, they are slightly overesti-
mated. The assumption that the elimination of covariances smaller than 10% of
o2 is permissible therefore seems to be reasonable.

The main “tail cutting” advantage is that the computation time of the covari-
ances of local averages is considerably reduced. This reduction is more meaningful
for meshes consisting of a large number of elements.

2.3. Stochastic FEM in Symmetrical Problems

In FEM analyses, it is not rare that symmetrical problems are solved in which the
system, medium-load, has a line of symmetry. In soil mechanics this line is usually
vertical. In cases of symmetrical problems, ordinary, deterministic FEM uses only
one symmetrical part of the half-space of the medium and loads.

In stochastic FEM the application of symmetrical analysis is equal to the
assumption that the elements, whose centroids lie on the same horizontal line
and are equally distant from the line of symmetry, are fully correlated. A direct
consequence of such an assumption is the vanishing of horizontal displacement
standard deviations, oy, for nodes lying on the line of symmetry. However, the
negative consequences are much greater.

In Table 4 the results of full and symmetrical analyses for one force load and
mesh A4 are compared. It is striking how much the results are distorted by the full
correlation between pertinent elements.

Table 4. Comparison between half-space and full-space calculation results, mesh A, one force load

one part
full analysis symmetrical analysis errors
B E[v] oy E[v] oy E[v] oy

0.1 [ —0.07298 | 0.01562 | —0.07377 | 0.01749 | +1.0% | +12%
0.2 | —0.07223 | 0.01204 | —0.07286 | 0.01368 | +0.9% | +15%
0.3 | —0.07156 | 0.00988 | —0.07234 | 0.01132 | +1.0% | +13%
0.4 | —0.07152 | 0.00837 | —0.07176 | 0.00975 | +0.4% | +16%
0.5 | —0.07118 | 0.00746 | —0.07145 | 0.00861 | +0.4% | +16%
1.0 | —0.07024 | 0.00435 | —0.07028 | 0.00552 | +0.2% | +27%
2.0 | —=0.06957 | 0.00235 | —0.06971 | 0.00330 | +0.2% | +41%
4.0 | —0.06939 | 0.00125 | —0.06945 | 0.00177 | +0.1% | +42%

All the results of the one part symmetrical analysis are highly and for greater
B very highly overestimated. The overestimation of o, is so high that it disqualifies
one part symmetrical analysis completely.

T A e e N Nl e iR s e e b S
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The errors for the expected values of displacements are not high but it does
not pay to apply stochastic FEM to obtain first moments of the probability dis-
tributions only.

2.4. Grouping Finite Elements into Larger Local Averages

The mesh that is deterministically optimum usually consists of different types of
elements, thus it can be difficult to compute the parameters of local averages.
However, a simplified analysis can be carried out. It consists in grouping several
finite elements into larger ones that form local averages, rectangular or square
if possible. The random field is then discretized with respect to greater local
averages, thus the elements that form greater local averages are fully correlated.

The influence of grouping was investigated utilizing the results for mesh B. It
consists of 140 elements such that/ = 2.02 m (horizontal) and ¢ = 2 m (vertical).
At first the analysis for all 140 elements, treated as local averages, was carried
out. Then each four elements were grouped into 35 local averages such that L =
21, T = 2t. The results are compared in Table 5.

Table 5. Comparison of results for local averages of grouped and nongrouped elements, mesh B,
one force load

nongrouped grouped errors

B E[v] oy E[v] oy E[v] oy
0.1 | —0.08050 | 0.01831 | —0.08076 | 0.01785 | +0.2% | —2.5%
0.2 | —0.07998 | 0.01544 | —0.07947 | 0.01320 | —0.6% | —14.0%
0.3 | —0.07934 | 0.01156 | —0.07975 | 0.01094 | —-0.7% | —5.3%
0.4 | —0.07882 | 0.01056 | —0.07846 | 0.00935 | —0.5% | —11.0%
0.5 | —0.07840 | 0.00869 | —0.07752 | 0.00820 | —1.0% | —5.6%
1.0 | —0.07746 | 0.00554 | —0.07689 | 0.00500 | —0.7% | —9.8%
2.0 | —0.07657 | 0.00310 | —0.07628 | 0.00282 | —0.4% | —6.0%
4.0 | —0.07637 | 0.00179 | —0.07620 | 0.00156 | —0.2% | —13.0%

We can see that values of E[v] estimates are very little underestimated (for 8 =
0.1 overestimated). Standard deviations o, are, in turn, underestimated consider-
ably. This does not, however, disqualify this approach completely. It only indicates
that the grouping should be avoided in the vicinity of loaded nodes. Further in-
vestigations would seem necessary to find the areas for which the grouping will
cause less serious errors.
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2.5. Comparison of “Point” and Local Random Field Discretization Results

The simplest method of random field discretization is to assume that the local
average parameters are equal to the point parameters of the random field. Thus,

the variance of the local average is assumed equal to the field variance O'p2:

02 =02 3)

Simultaneously, correlations between local averages are equal to the field cor-
relation between the centroids of local averages. The discretization performed
following such assumptions is called point random field discretization. It neglects
the correlation decay of the random field within the local averages themselves
and therefore leads to overestimation of the displacement distribution parame-
ters. Table 6 exemplifies this overestimation.

Table 6. Comparison of results for point and local average discretization, mesh A, one force load

local average point €rrors
discretization discretization
B E[v] oy E[v] oy E[v] oy

0.1 | —0.07298 | 0.01562 | —0.07418 | 0.01800 | +1.6% | +15%
0.2 | —0.07223 | 0.01204 | —0.07285 | 0.01370 | +0.9% | +14%
0.3 | —0.07156 | 0.00988 | —0.07301 | 0.01190 | +2.0% | +20%
0.4 | —0.07152 | 0.00837 | —0.07307 | 0.01100 | +2.2% | +32%
0.5 | —0.07118 | 0.00746 | —0.07256 | 0.01030 | +1.9% | +38%
1.0 | —0.07024 | 0.00435 | —0.07235 | 0.00906 | +3.0% | +85%
2.0 | —0.06957 | 0.00235 | —0.07210 | 0.00713 | +3.6% | +204%
4.0 | —0.06939 | 0.00125 | —0.07210 | 0.00696 | +3.9% | +457%

We can see that the results are so highly overestimated that the point discre-
tization is useless even when the random field is strongly correlated (small B).

3. Conclusions

I. Application of Monte Carlo techniques to FEM requires an ample sample
size to obtain reasonably accurate estimates of standard displacement devi-
ations. It stretches from n = 1000 simulations for weakly correlated random
fields (B = 4) to at least n = 3000 simulations for highly correlated ones
(B = 0.1). < o

II. Estimates of parameters of a higher order are inaccurate and need much
greater sample size. An increase of accuracy, however, is rather difficult to
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achieve at least for standard PC equipment. Estimates of the third central
moment 3, though inaccurate, are worth computing, since they supply in-
formation as to whether a given distribution may be treated as gaussian or
not.

“Tail cutting” in the covariance matrix of local averages results only in very
slight underestimation of parameters and can be useful for large meshes
by reducing numerical calculations of the covariances of local averages. It
needs, however, a modified diagonalization procedure which enforces the
matrix to become semipositively definite.

Symmetrical problems must be analyzed in the whole so as not to fully
correlate relevant local averages on both sides of the line of symmetry.
Othervise the parameter overestimation is very high and the calculation
results are worthless.

Grouping the finite elements into greater local averages results in underes-
timation of parameters, especially standard deviations. The expected values
of displacements are only slightly underestimated.

To avoid excessive underestimation, the grouping should be avoided in

the vicinity of loaded nodes. Further analysis would be necessary to find the
regions in which the local averages could be grouped not exposing the final
results to serious errors.
“Point” discretization of the random field is not recommended, as the errors
of overestimation are the highest of all numerical experiments performed.
The results for even very strongly correlated fields, such that g = 0.1 are
overassessed too much.
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