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Abstract

The paper is devoted to discretization of continuous random fields in stochastic FEM
used in soil mechanics. General formulas were derived to obtain variances and covari-
ances of random field rectangular local averages. A numerical routine and approxima-
tion formulas to compute these parameters for analytically unintegrable random field
covariance functions are described. Approximation of the variance of non-rectangular
local averages is also depicted.

1. Introduction

One of the modern tools used nowadays in the analysis of random media is the
stochastic FEM in which the results are in the form of parameters of random fields
such as mean values, variances etc. The stochastic FEM is becoming increasingly
popular in many branches of structural analysis. Although the method exhibits
some similarities in all applications, each of them is specific, because the tasks
for which we use it differ. Thus, the mathematical description of each issue is
usually different. This paper is devoted to some specific features of application
of the stochastic FEM in soil mechanics and is divided into two separate parts.
In the first one, which forms this publication, attention is concentrated on some
aspects of discretization of continuous random fields. In the second, which will
. be published next, focus is on problems of application in the analysis of a soil
~ stratum treated as a random field.

2. Fundamentals of Monte Carlo Simulation for FEM in Soils

In general, there are two main groups of methods adapted to stochastic FEM. The
first approach known as the perturbation method (Shinozuka, Yamazaki 1988) may
not always be applied in soil mechanics, because it assumes only small random
fluctuations of variables, which is rarely true for soil properties. What is more
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important, it is difficult to apply as it needs a huge capacity of computers to
calculate matrix derivatives of random fluctuations. For these two reasons the
perturbation method should not be recommended for two-dimensional spaces.

The second approach bases on Monte Carlo Simulation techniques (MCS).
With this method it is easy to simulate two dimensional random fields and/or loads,
if necessary. Fast computers can produce quite large samples in a reasonable time
so the main shortcoming of all Monte Carlo techniques is no longer as strong
a limitation as it used to be. MCS therefore seems to be most convenient for
two—dimensional media whose properties vary as greatly as in soils.

There is also a third group of stochastic FEM techniques which were developed
in the last few years. The most promising are the orthogonal series expansion
(Spanos, Ghanam 1989) and weighted integral method (Takada 1990). However,
their applications are confined to simple, one dimensional problems and simple
correlation functions. From the theoretical point of view they could be generalized
for two or three dimensions, but it seems that mathematical difficulties are too
great.

For these reasons MCS is the most handy for the purposes of soil mechanics,
so it is briefly described below. The concept of MCS in FEM lies in repeated
solutions of the basic FEM equation:

KV=F (1)
where:

K - m x m stiffness matrix,
F - m x 1 load vector,
V - m x 1 displacement vector.

Equation (1) can be applied to all systems without initial deformations. It
is very universal, both K and F can be random simultaneously. It needs to be
solved n times to permit the obtaining of the estimates of probability distribution
parameters of each displacement, strain or stress A. In general, the routine for
the MCS in FEM consists of the following steps:

I. simulation of K and/or F,
II. solution of (1),
III. calculation of strains and stresses (if needed),
IV. calculation of the probability distribution parameters (after » cycles I to III).

The distribution parameters can be evaluated from formulas (2) to (5):
n
2 i
i=1
n

A=

(mean), _ (2)
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n
wa=E— - = — @ = — -3
n n n

Y= g (fourth central moment and kurtosis). (5)

It is evident from the above, that it is not necessary to store the solutions of all
simulations but only the sums of A, A2, A%, A%, and higher powers if required.

3. Random Fields in Stochastic FEM
3.1. Discretization of Random Fields

The first problem that is usually encountered in stochastic FEM is pertinent dis-
cretization of continuous random fields of material properties into finite discrete
random variables. This is relatively simple providing that the fields are gaussian.
Obviously, random loads do not have to be gaussian since they are represented
in the form of nodal forces and are generally treated as mutually uncorrelated
discrete random variables of arbitrary distribution.

Random fields of material properties should be transformed into discrete,
finite random variables in such a manner that their probabilistic parameters take
into account the variability of correlation of the initial continuous random field
within finite elements. Neglecting this usually leads to incorrect values of X, o, u3
and u4. The effects of such negligence will be shown in part IIL.

The theory of random field local averages must be incorporated to gain the
proper mapping of a random field into random variables. This is performed below
for a common model of a gaussian, first order, Markovian homogeneous and
isotropic random field with an exponential function of correlation decay. The
field f(x,y) has the following parameters:

- mean value f,
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— variance or:,

- correlation function between points “1” and “2”

and
p(d) = exp(—pBd), (6a)

d= \/(xz —-x1)% + (y2 = »1)% (6b)

where B is the parameter of correlation decay.

According to (Vanmarcke 1983) the local average of a random field in a rectan-
gular element / x ¢ can be expressed as a discrete random variable by the following
stochastic integral:

It

f’:[ltffi(x,y)dxdy- (7

00
The initial field is homogeneous so the mean of f™ is unchanged:

E[f"]=E [fff(x y)dxdy]= ff fen]ddy=F. @

Its variance can be calculated using a very well known expression:

2 =E|(m)]- 07" ©)

Inserting (7) into (9) one obtains:

[ 2

o = sk ([jicx.y>dxdy) - (N’

0

Replacing the expectancy of square of the integral by the quadruple integral of
the expectancy of the product of two functions, that are the same but depend
upon different variables, yields:

t

{ It
1
=-2—b/h[0[_D/E[i(x,y)i(z,u)]a'xdydudz—(f)z. (10)

It is known that:

E[f .y) f @ )] = coolf . y) f @] + (F)°. (11)
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If the points P(x,y) and Q(x +u,y +2z) for u,z > 0 lie in the element and the
covariance between them is g (u, z), we can write (10), using (11) as:

02 It x x t=y y I—x
=ﬁf‘[(f[gdudz+ffgdudz+ffgdudz
00
I—xt=y
¥ f fgdudz) dx dy (12)
0

hence:
g 4
ol = 2—”_[_[(110: Y+ hx,y)+ B, y) + L, y)dedy.  (13)
0

= (Iy + L + I5 + I4) /1t expresses the correlation of two variables; the first at a
point P(x, y) and the second averaged over the whole finite element. The function
g (u, z) for relations (6a, b) equals:

g(u,z) = exp (—ﬁ(u2 +22)°'5) (14)

so analytical integration of (12) is not possible.

The derivation of integral formulas for covariances of local averages f™ and
f" is quite similar and is shown below for two identical rectangles. Providing that
they do not partly overlay each other, two cases can be distinguished (Fig. 1):

£y

Y

III

il

Fig. 1. Orientation of Local Averages in Stochastic FEM

I. Projections of both of them on one axis of the coordinate system fully co-
incide (vertical in Fig. 1). If the distance between their centroids equals £,
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we may write the covariance as:

02 1 ¢ y E+l—x
cov[I,II]=cu=%ff f f gdudz
00 0 é&—x
t—y £+l —x
+f fgdudz dx dy (15)
0 &—x
hence:
g &
o=tz [ [ )+ bicyndsay. (16)
00

II. Projections of local averages do not overlap at all. Thus, the projections
of the distance between the centroids are £ and n (horizontal and vertical
respectively). Hence, the expression for covariance takes the form:

9 It EHl—x n+t—y
o
COU[I,HI]=Cu=I%ff f gdudzdxdy (17)
0 0 &-x n—y
$0:
5 b
o
cu=ﬂ7ffmx,y)dxdy. (18)
00

I = (11 + I)/It or I = I,/It represent the correlation of the random field at the
point P(x,y) pertaining to one of the elements and the local average of the
random field over the second element. Function g is the same as before so no
analytical integration is feasible.

A numerical routine for calculating o2 or c, consists of two basic steps. In the
first both elements for c,, or one for cr,f, are divided into rectangular subareas
Al x At such that:

Al =1 / my,

19
At =t/m,. (19)

Both my, and m, must be integers. Then the values I (x, y) are assessed as a mean
covariance for a corner of each subelement with all other corners of subelements
of the second (c,) or the same (52) element.

In the second step volume ¥ of a solid having the base ! x ¢ and vertices I (x, y)
is computed. To do so a trapezium or Simpson methods can be employed. o2 or ¢,
are finally calculated as V///t. Numerical experiments proved that my, = m, = 20
gives a good accuracy of results if the Simpson method is used.
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3.2. Approximation of o2 and c,

It was shown in the previous subchapter that the terms of the local average covari-
ance matrix, for isotropic fields whose correlation function decays following (14),
can not be received by analytical integration. Nevertheless, one can derive analyt-
ical approximation formulas using such a random field whose correlation function
is analytically integrable. Below, the approximation formulas are derived.

One of the functions which can be integrated analytically is:

Rx,y) =exp (=f1lx| — B21y]). (20)

It can be a correlation function of a homogeneous but anisotropic random field.
It can be presented as a product of two functions of separated variables and
therefore the integration is easy.

From formulas (12), (15) and (17) we can see that ¢, and o2 depend upon
ap2 so the approximating field, like the initial one, must have the same variance.
Moreover, it must have the same mean, which is obvious, since both fields are

homogeneous.
The function g (u, z) for the correlation function (20) is as follows:
8, z) = exp (—p1u — frz) . (21)
From (12), after integration we obtain:
402 i - — — '
o2 = 2% (1 REL SO SN
BBt pil Bat

In the same manner from (15) we obtained the formula for ¢, for elements whose
projections coincide:

dolexp(—pBi§) 1 —exp(—B2t)
T i il = —— R
Cu = 312 2yt (cosh(Bil) — 1) (1 Bt ) (23)
When the projections do not coincide:
4o2exp(—pr& —
o= TP 2P coshipil) (1 - cosh(Ba.  (24)

ﬁf ﬁ% 1242
The concept of approximation lies in calculation of coefficients of horizontal
and vertical correlation decays 8; and B;. As the initial field is isotropic one can
write:
P1 = B2 = Br. (25)
The value of Br is specific for each pair of local averages. It is derived from the
assumptions that relate the parameters of both random fields. For this purpose,
directional scales of fluctuation and characteristic areas are computed.
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The directional scale of fluctuation can be defined as (Takada 1990):
5= / k(r cosa, r sina)dr, (26)
—00

k(x,y) is the random field correlation function for which x =r cose, and y =
r sina. The angle « € [0, 7] indicates the direction. Similarly, we define the char-
acteristic area:

o0 00
F= f f k(x,y)dx dy. 27)
—0Q —00
For the initial field these formulas yield:
§=2/8, (28)
F =2r/p%. (29)

The field is isotropic so 4 is direction independent. In turn, for the approximating
one:

8o = 2/Br(|sina| + | cosa|), (30)
F =4/B}. (31)

If both scales of fluctuation are to be equal then comparing (28) and (30):
B “" (32)

" |sina| + |cosa|

It can be seen that for @ = 0 or @ = /2 Bg = B.
If characteristic areas are assumed to be equal then:

The variance o and covariances for elements having one side in common are
proposed to be approximated, basing on (33), by formula (22) for o2, and (34) for
cu. It is proposed the covariances for more remote elements whose projections on
the coordinate axis coincide, and elements sharing one corner, be approximated
basing on (32) and (33). Both values are then averaged to obtain the approximated
cu. Where the projections coincide, covariance (23) is calculated twice, first for
Br = 0.88 and next for B, equal to the right hand side of (32), and then averaged.
If in turn the corner is common, formula (24) must be similarly employed. All
other covariances are received from (24) basing on (32) only, for which | sina| +
| cos | can be expressed in terms of £ and n:

s
N

The above assumptions result in the following approximation formulas:

|sine| + |cose| = (34)
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- for the variance:

6.280, 1 — exp(—0.88]) 1 — exp(-0.88¢)
(1— 0.8p! )(l— 0.8t ) )

o2~

¥ Bt
— for the covariance when one side is common:

7.87502exp(—0.861)
- p _
€y = 5% (cosh(0.880) — 1)

1 — exp(—0.88¢)
x (1 = T ) (36a)

when ¢ is common and:
7.87503exp(—0.8ﬁt)
i 8312

1 — exp(—0.881)
X (1 - 0881 ) (36b)

(cosh(0.88¢t) — 1)

when / is common,
— for the covariance of remote elements whose projections coincide:

N 3.9380, exp(—BE) 1- exp(—O.Sﬁt))

CuN

(cosh(0.881) — 1) (1 -

B3l 0.8pt
202 exp(—BE) 1 — exp(—ft)
B e A . e O i
+ FEE, (cosh(Bl) — 1) (1 Bt ) (37a)

when ¢ coincides and:

g 3.93802 exp(—fBn)

(cosh(0.881) — 1) (1 i BXP(—O.SﬁI))

B3t 0.881
207 exp(—  1-exp(—pl
+ 7;1;21 A1) coshigt) - 1) (1 - ST exﬁp;( s )) (37b)

when [ coincides,
— for the covariance of elements whose one corner is common:
. 4.93507 exp(—0.88( +1))

CuN

(1 — cosh(0.88!)) (1 — cosh(—0.88¢))

B412¢2
252 —B(I% +12)05 2 4 42y05
= cxp4(gﬂft(222!2:2 ) ) (1 el (ﬁl : :_ -: t) ))
A (+1)

2, ,2\05
X (1 — cosh (ﬁtgl_:_;t))) (38)
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— for all other covariances:

49.2 exp (_ﬁ(EZ i n2)0.5) (52 2 n2)0.5
o~ p — ———————————
o i 2&4-2#:‘[2:2 i ' E+n

2 2,0.5
x (1 — cosh (ﬁt %)) . (39)

To verify these approximation assumptions the calculation was carried out for
a net of square elements shown in Fig. 2 and two initial random fields for which
B=05and g =2

P ", E—

4 2 3] 4

5 6 7
8 9
10

Fig. 2. Net of Square Elements for Numerical Verification of Analytical Approximations

The comparison between numerical, very accurate integration results, and ap-
proximating values of 02 and ¢, computed by formulas (35) to (39) is given in
Tables 1 and 2. The symbol 1-1 denotes auz, others refer to covariances of the
element “1” and elements “2” to “10”. These tables show that the approximation
results are quite satisfactory.

Local averages over non-rectangular elements are much tougher to approxi-
mate analytically, even if the elements are triangular, for the integration limits in
approximating formulas are difficult to define. Numerical routine in turn would
have to be very complicated if it was to embrace local averages over elements of
all different shapes.

This difficulty can relatively easily be avoided in case we want to assess only o2,
for a random field averaged over a non-rectangle. The idea of this approximation
consists in the replacement of such a non-rectangle with a pertinent rectangle.
This rectangle should obey two conditions:

L. surface A4 of both elements is equal
II. the ratio k of bisectrices of the initial element:
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Table 1. Results of analytical approximation
Initial random field: 62 =1, g = 0.5

numerical analytical absolute | relative

integration | approximation | error error
1-1 0.7717 0.7726 —0.0009 | 0.1%
1-2 0.5904 0.5971 —0.0067 | 1.1%
1-3 0.3675 0.3602 0.0073 | 2.0%
1-4 0.2247 0.2312 —0.0065 | 2.9%
1-5 0.4882 0.4941 —0.0059 | 1.2%
1-6 0.3275 0.3346 -0.0071 | 2.2%
1-7 0.2073 0.2111 —0.0038 | 1.8%
1-8 0.2447 0.2482 —0.0036 | 1.4%
1-9 0.1664 0.1684 -0.0020 | 1.2%
1-10 0.1213 0.1224 —0.0011 | 0.9%

Table 2. Results of analytical approximation
Initial random field: a_& =1, =20

numerical analytical absolute | relative

integration | approximation | error error
1-1 0.3885 0.3925 —0.0040 | 1.0%
1-2 0.1521 0.1559 —0.0038 | 2.5%
1-3 0.0253 0.0229 0.0024 | 9.5%*
1-4 0.0033 0.0041 —0.0080 | 24.0%*
1-5 0.0736 0.0747 -0.0011 | 1.5%
1-6 0.0149 0.0164 —0.0015 | 10.0%*
1-7 0.0024 0.0027 —0.0003 | 12.0%*
1-8 0.0047 0.0048 —0.0001 | 3.2%
1-9 0.0010 0.0010 <1073 | 3.8%
1-10 0.0003 0.0003 0.0 0.0%

*high relative errors caused by ¢, close to zero
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. max(ay, ay, - - .,a;) (40)
 min(a},a, ....q))
where [ is the number of element vertices, must match the ratio of sides of the
rectangle.
For these requirements the rectangle sides are as follows:

Ly=+Ak, tq=+/Alk. (41)

Formulas (41) were verified for local averages of triangular elements. Nu-
merical integration for triangles and approximating rectangles were performed to
compute o2. The verification was done for two different triangles and for random
fields whose o7 = 1, = 0.5, 1.0 and 2.0:

I. An equilateral triangle, whose side equals 1, is replaced by a square [4 =
t4 = 0.658. The results were:

B=05 o2=0.8297 (triangle),
o2 = 0.8429 (square)  error 1.6%,

g =10 o?=0.6954 (triangle),
02 =0.7152 (square)  error 3.0%,
=20 o2=0.4993 (triangle),

q

2 — (0.5252 (square)  error 5.0%.

II. An isosceles triangle, such that 4 = 1, o = 120°, is replaced by the rectangle
14 =1.564, t4 = 0.639 which gave:

B =05 o2 =0.7157 (triangle),

u

2 = (.7475 (rectangle) error 4.4%,

2 = (.5335 (triangle),

2 — (0.5714 (rectangle) error 6.0%,
B =20 o2=0.3252 (triangle),

o2 = 0.3618 (rectangle) error 11.0%.

u

The approximation, though a bit less accurate than the one from Tables 1 and 2, is
fairly good. We can see that the greater the surface of the element and the weaker
the random field correlation, the poorer the approximation results. In (R6zyiski
1992) it is shown that in order to minimize the anisotropy of rectangular local
averages | x ¢ the finite elements and the random field should obey the condition

Bl <05 (42)
where [ > t. For squares the limitation is not so strict and should be:
Bl <2. (43)

Thus the maximum values of g equal:



Stochastic FEM in Soil Mechanics, Part I 99

- for the square approximating the equilateral triangle 1.32 (I),
- for the rectangle approximating the isosceles triangle 0.32 (II).

In the case of an equilateral triangle the condition (43) is satisfied for g = 0.5
and 1. However, the approximation of o2 is also good for g = 2.

In the case of an isosceles triangle the limitation (42) is not satisfied at all,
but for B < 1 the error of approximation is not high. Thus we can see that con-
ditions (42) and (43) which the mesh of elements should fulfil, guarantee a good
approximation of o of non-rectangular local averages. Morever, we may intu-
itively predict that the accuracy should be greater for multilateral local averages
like rhombs, parallelograms, hexagons etc.

4. Conclusions

I. Random fields must be discretized with local averages so as not to neglect
correlations across elements.

II. Rectangular, homogeneous nets are the most convenient when the terms of
covariance matrix of local averages are to be computed because of simple
limits of integration.

ITII. Most correlation functions are not analytically integrable. However, an an-
alytical approximation of the local average covariance matrix is feasible and
gives satisfactory results. It bases on characteristic areas and directional
scales of fluctuation.

IV. o2 of non-rectangular local averages can be approximated by o2 of an equiv-
alent rectangle. Local averages of weakly correlated random fields (greater
B), over elongated elements, cannot be approximated very accurately. Co-
variances of non-rectangles are much more difficult to approximate analyt-
ically.
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