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Abstract

In this work measured wave flume kinematics data are compared with the non-linear
theory of random waves, which is presented in Part 1 of this paper (Cieslikiewicz,
Gudmestad 1994). Conformity of theory and the experiment is excellent. The only
difference between predictions and measurements was found in the mean value of
the horizontal velocity. It is suggested in this study, that the existence of the return
flow in a confined wave flume explains the deviation. The theoretical results of Part
1 are therefore used for better estimation of that return current.

1. Introduction

If we assume that a random wave is a composition of denumerably many inde-
pendent harmonic components, then by the central-limit theorem the free surface
elevation becomes Gaussian. The Gaussian model, however, inherits all the diffi-
culties of the linear wave theory. This is particulary evident in the surface zone.
For example, one difficulty relates to finding the probability law for the water
particle velocity at a point in the vicinity of the mean water level. In actual waves,
this point would sometimes be above the sea surface and sometimes below it. The
velocity would assume a range of values when the point was submerged and would
not be determined (or set to be zero by assumption) when not submerged. In Part
1 of this paper the possible answer to the above question has been presented. The
water wave velocities, modified by the so-called emergence effect, were examined
and stochastic characteristics of that random field were determined. It is evident
that the velocities at points near the surface zone follow a non-Gaussian distribu-
tion even under the assumption that the sea surface oscillations are Gaussian. This
is so, since the relation between the surface elevation and the modified velocity
is non-linear even when the relation between the elevation and the unmodified
velocity is linearized. Hence, we discuss the kind of non-linear effects that exist
in the framework of linear wave theory.
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In the theoretical considerations of Part 1, in addition to the emergence effect,
the influence of non-linearity of the motion itself was examined. The aim of Part
2 of this paper is, firstly, to check, basing on measurements, the validity of the
approach to surface effects by introducing the emergence effect. Secondly, to
compare the influence of that effect with the influence on wave kinematics of
second-order wave theory non-linearities.

There are not many papers reporting particle velocity measurements with em-
phasis given to measurements in the vicinity of the mean water level. First such an
experiment was reported by Anastasiou et al. (1982a, b), and recently, by Skjel-
breia et al. (1989, 1991). These latter measurements will be used to verify the
theoretical findings of this study. The results have recently been used to update
random wave velocity estimates (Gudmestad and Haver 1993).

2. Experimental Setup

The experimental arrangement and subsequent results discussed below were de-
scribed in detail in papers by Skjelbreia et al. (1989, 1991). The experiments were
carried out in a tank which is 33 m long, 1.02 m wide and 1.8 m deep. The irreg-
ular wave generator of this tank is hydraulically driven and the control signal was
constructed from a JONSWAP target wave spectrum using JONSWAP peaked-
ness factor y = 3.0. The spectrum was divided into 1000 frequency components
and each component had a random phase.

At the end of the tank, opposite the wave generator, was located a passive wave
absorber consisting of a series of vertical perforated steel plates. The reflection
coefficient was estimated as ~ 5% over a broad frequency range.

The surface elevation for each wave case studied by Skjelbreia et al. (1989,
1991) was generated from one spectrum and measured with 7 standard resist-
ive-type gauges. The special arrangement of the gauges was adopted to decompose
incoming and reflected irregular waves (Zelt and Skjelbreia 1992). Three gauges
were placed close to each other in order to resolve the first order waves, while
another four gauges were distributed along the wave tank to resolve long waves.
The accuracy of the wave gauge positions was 0.01 m.

The flow velocity was measured on the centreline at a single longitudinal po-
sition along the tank, coinciding with one of the gauges, but at several different
elevations by a two-component Laser Doppler Velocimeter (LDV). The two ve-
locity components were measured in a plane parallel to the side wall of the tank
with a measurement volume cross-section of approximately 100 um in diameter.
The LDV was specifically designed for this study and had the special feature of
using only a single laser beam in the flow.

The LDV allowed measurements from wave crest down to tank bottom but at
one point in space only during one run. In order to obtain the distributions for
the statistical properties of the velocity along the vertical axis it was necessary to
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repeat the experiment with exactly the same free surface elevation spectrum but
locating the LDV station at different vertical positions. Great care was therefore
given to maintain reproducible wave conditions in the tank. It was found that it
is very important for reproducibility of the wave flow to keep a constant water
depth. Special attention was paid to measuring orbital velocity components within
the surface layer.

.. Each run in the test programme had a duration of 819.2s. All seven wave
gauge channels were sampled simultaneously with the two LDV channels, at a
rate of 40 Hz.

3. Statistical Analysis of Measured Free Surface Elevation
and Particle Kinematics

In order to examine the variation of the stochastic properties of velocities with

z-elevation, the analysis of a number of runs for two wave cases from Skjel-

breia’s measurements in the Norwegian Hydrotechnical Laboratories’ wave tank

(Skjelbreia et al. 1989, 1991) was carried out. These were 12 runs of Case

5—measurements series 118 and 13 runs of Case 6—measurements series 124.

The wave conditions reproduced in the tank for selected sea states were given by

the significant wave heights Hg and the peak periods 7, as presented in Table 1.

The measurement levels for each run as well as statistical properties of surface .
elevation are listed in Tables 2 and 3 for Cases 5 and 6, respectively.

Table 1. Wave parameters for cases analysed (Skjelbreia et al. 1989, 1991)

Wave | Measurement | Hs | 7, | Depth
Case Series (m) | (8) | (m)
5 118 021 18| 13
6 124 025(24| 13

Digitizations of the free surface elevation and velocity time series were carried
out at a rate of 40 Hz and samples of 32 768 measuring points were collected. The
first 2048 and last 1024 data points for each time series were omitted in order
to cancel possible transition effects, giving finally the N =29696 point length
sequence.

Measurements of the particle velocity near the mean water level have varying
degrees of intermittency behaviour depending upon the level at which they were
obtained. This occurs when the probe volume of the LDV emerges from the water.
Until the water surface moves back up to the level of the LDV the signal holds at
the last measured value (Skjelbreia et al. 1989). Figure 1 shows this behaviour of

recorded velocities. Time series of particle velocities u; and w; were therefore
modified numerically such that their values during drop-out periods were set equal
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to zero:

(@, W;] = [ui, wi]HE&i —2) (€Y
in which z is the level of the LDV and #(-) is the Heaviside unit step function.
In the last equation, and below in this chapter, the notation has been changed for
convenience. Namely, subscript indicates the number of data point in the sample,
while the velocity components are u, v, w, i.e. u=[u,v,w] and 0= [&, 7, 0].
Equation (1) is of course in agreement with the equation (5)*.!

The time series &, #; and w; were subjected to statistical and spectral
analysis. The statistical analysis involved calculation of the first four statistical
moments, coefficients of skewness and kurtosis and probability density functions
for each series. Also joint statistical moments for surface elevation and orbital
velocities were calculated. In this section spectral analysis results of the data are
presented while those concerning probability distributions will be discussed in the
next section.

Figures 2 a, b, c illustrate the character of the time series ¢;, #; and w; for
various vertical locations of the LDV station. It is clearly seen that the emergence
effect becomes more pronounced for higher LDV elevations.

Segmental smoothing was required for the spectral calculations. This was done
according to the “Welch method” (Oppenheim and Schafer 1975). The sequences
of length N =29696 points were divided into 57 sections of M = 1024 points
each. The segments were overlapped by one half of their length. Successive sec-
tions were multiplied by a Hanning window, transformed with a 1024-point FFT,
summed and averaged. This smoothing resulted in a number of degrees of freedom
equal to double the number of sections the sequence was divided into, i.e. 114.
The 95% confidence intervals were estimated by calculating the variance of the
unaveraged spectral estimates under the assumption of normal distribution.

The power spectra for 513 frequency values evenly spaced between 0 and
the Nyquist frequency (f. = 20 Hz) were obtained. For the analysed wave case
- the peak frequency f, ~0.56Hz, and for the most energetic range (0,3f,)
43 values of the power spectra were obtained with discrete frequency spacing
Af =0.039 Hz ( Aw = 0.245 rad/sec). In addition, coherence and transfer func-
tion estimates were obtained from cross-spectral estimates between surface ele-
vation and velocities:

Sea(w)
Ln = ) Tiw = 2
ria() Se (@) rw(w) Sre(o) (2
y S |S{ﬁ(ﬂ))|2 2 ) |Sgw(w)|2
Yer(w) = —S“ (o) Y;W(OJ) = ——S“ 7 :S,m @' 3)

where Sy, Sm, Sww are spectral densities for £, @7 and W respectively, ;. are
the cross-spectral densities between surface elevation and velocities, 7;. are the

We use a star * to denote equation numbers in Part 1 of this paper.
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complex transfer functions from ¢ to velocity marked in subscript, and yf_ are
the corresponding coherence functions.

The measured spectra of surface elevation were used to calculate the statistical
parameters for the particle kinematics (Section 4). These calculations involve nu-
merical integration over frequency. In order to obtain integrals with high accuracy
and with a small number of function evaluations of the integrand, the adaptive
recursive Gaussian quadrature method was used. Cubic spline interpolation was
used to prepare the suitable function segments for the computer programme.
Spectral densities, coherences and transfer functions presented in the following
figures were also interpolated over a finer abscissa using cubic splines.

Figures 3 and 4 show estimated spectral densities of surface elevation ¢ for
Run 1 of Case 5 and Run 6 of Case 6. It is noted that the measured spectra
show no obvious secondary peaks. Cases with higher degrees of non-linearity
were not available from Skjelbreia’s series of experiments. It should be noted
that very good reproducibility of wave conditions was obtained in the tank—at
least when spectral density of surface elevation was considered. Deeper insight
into this question gives examination of the first four statistical moments of free
surface elevation. In Tables 2 and 3 the mean values, standard deviations, skewness
and kurtosis coefficients are presented for the 12 runs of wave Case 5 (I18) and
13 runs of Case 6 (I24). Skewness is not much greater than 0.2 for each of them,
which means that strong deviations from the Gaussian distribution (Ochi and
Wang 1984) should not be expected for the free surface.

In Figure 5 the histograms with 30 equally spaced bins between the minimum
and maximum values of ¢ for Run 10 of Case 5 and Run 16 of Case 6 are
presented, showing the estimated probability distribution of free surface elevation.
Values p; of the histogram are scaled so that direct comparison with probability
density function is possible:

p,-:Nn—Ac for i =1,2,...,30, (4)
in which N is the number of data points (29696 in this example), n; is the
number of data points observed in the ith bin and A, is the width of the bin.
Outliers greater than 5 standard deviations were removed which gave the bin’s
width A, < o0;/3.

It is seen from Figure 5 that measured surface elevations only slightly deviate
from the Gaussian distribution. This means that for points which are continuously
submerged we should not expect significant deviations from the linear wave theory
in both wave cases analysed.

Figures 6 to 13 show observed spectral densities of horizontal and vertical
velocities as well as transfer and coherence functions between ¢ and velocities
for Case 5, while Figures 14 to 21 show the same quantities for Case 6. Three
elevations are considered for the horizontal velocity while results for the vertical
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Table 2. LDV locations and statistical properties of surface elevation for Case 5 runs analysed
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Meastre- Statistical properties of surface elevation
Run ment Mean Standard
level z value deviation Skewness | Kurtosis —3
(m) (m) (m)
30 020 |-1.69-10"3|5387-10"2|259.10"' | 1.78-10"!
27 015 | —-2.00-10"3|5488-10"2|250-10"! | 1.64-10"!
15 0.10 | -2.08-103|5.675-10"2|265-10"' | 1.50-10"!
10 005 |-217-10"3|5.410-10"2 | 246-10"' | 1.66-1071
25 000 |-128.10"3|5334.102|249-10"' | 1.78.10"!
23 —005 | -136-10"3|5464-10"2 |262-10"! | 1.64-107!
1 —0.10 | —-1.99-10"3 |5340-102 | 2.41-10"! | 2.24.107!
4 —-020 | -233.-10"3|5.395-10"2|248-10"' | 1.85-107!
16 —025 | -199-10"3|5645-1072|267-10"1 | 1.50-10!
18 —050 | —4.18-1073 | 5.361-10"2 | 2.55-1071 | 1.97-107!
20 ~1.00 | —3.09-1073|5.335-10"2 | 2.47-10"! | 2.29.107!
34 —1.105 | —2.50-10-3 | 5.293.102 | 2.38-10"! | 2.30-107!

Table 3. LDV locations and statistical properties of surface elevation for Case 6 runs analysed

Statistical properties of surface elevation

Measure-
Run ment Mean Standard
level z value deviation Skewness | Kurtosis —3
(m) (m) (m)
32 020 | —1.06-10"3|6.552-10"2|2.68-10"' | 0.95.10"1
29 015 | -1.17.10"3 | 6.498-10"2 | 2.68-10"! | 1.32-107!
19 010 | -192-10"%|6.383-10"2 | 2.55-10~' | 1.39.1071
16 005 | -157-103|6.444.10"2|2.62-10"' | 1.27-1071
11 000 |-1.74-10"3]6.404-102|259-10"1| 1.61-1071
6 —0.10 | -221-10"%|6.390-102|2.62-10"! | 1.60-107!
7 —0.15 | -1.64-10"3|6.339-10"2 | 2.56-10"! | 1.46-107!
14 —020 | -1.41-10"3|6.847-10"2|3.10-10"! | 0.88-10"!
22 -025 | -1.50-10"3 | 6.850-10"2 | 3.00-10"! [ 0.75-107!
24 -050 | —4.46-10"3|6.771-10"2 | 2.86-10"! | 0.76-10"!
28 -0.76 | —0.84-10"3 | 6.381-10"2 | 2.60-10~! | 1.16-107!
26 -1.00 | -269-103|6.376-10"2 [ 2.65-10"1 | 1.26-107!
39 -1.105 | —1.40-10"3 | 6.221-10"2 | 2.59-10"! | 1.66-10~!
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velocity are given for two elevations. In Figures 8 and 9 as well as 16 and 17
theoretical values of the magnitude of the transfer functions |T;,| and |T;,|
are also indicated. They are derived from linear wave theory according to the
following expressions:

chk(z + h) shk(z + h)

| Tiu(w)| = w TR | T w(@)| =@ T (5)

where the wave number & is related to « by the dispersion relation:
w*(k) = gkthkh, (6)

in which g is the acceleration due to gravity.

In the vicinity of mean water level, lower spectral values for velocities were ob-
tained with increasing z-level. This is contrary to expectation of the linear random
wave theory when the emergence effect is not taken into account. Moving along
vertical axis upwards, the autospectra for # and @ possess a wider bandwidth
(see Figures 6, 7 and 14, 15). Moreover, second and third peaks at about 2w,
and 3w, frequencies appear.

The conformity between theoretical (according to linear theory) and observed
values of transfer function magnitude is good up to frequencies near twice the
primary peak frequency for measurements at low elevations. For higher elevations,
however, the linear wave theory without taking the emergence effect into account,
gives larger values at all frequencies (see Figures 8, 9 and 16, 17). The degree of
over-estimation increases with elevation.

The  rads shift can be noticed at frequencies of about half of the primary
peak value for the transfer function phase (Figures 10, 11 and 18, 19). It is also
noted that for elevation measurements high above the mean water level, /2 rads
phase shift between surface elevation and vertical velocity is lost, even close to
the peak of the wave spectrum (see Figures 11 b and 19 b).

Finally, the coherence functions between the surface elevation ¢ and particle
velocities (see Figures 12, 13 and 20, 21) should be examined. The values of
coherence at frequencies from half up to twice the value of the primary peak
frequency are about 1 for points continuously submerged. Moving further up they
fall down being 1 only close to the peak frequency at elevation z = 0.10 m. Since
the values of the coherence function may be viewed as a measure of the linearity of
a system in the absence of noise, it is evident that for points located deeply below
the mean water level, linear random wave theory is satisfactory for frequencies up
to twice the primary peak frequency. However, in the vicinity of the mean water
level the linear relation between surface elevation and velocities becomes invalid.
In this region the emergence effect has to be taken into account, when evaluating
the stochastic characteristics of the particle kinematics.
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4. Comparison of Theoretical and Observed Probability
Distributions of Velocities

In order to calculate the probability density function and statistical moments for
the velocities, the linear part of the spectral density should be known. In the
second-order approximation it can be assumed (Appendix A in Part 1) that

F(k) ~ FO(K). (7

This means that the observed spectrum is identified by its linear part. Moreover, a
case when all spectral components propagate in one direction only is considered.
In the numerical integration the energy contained in the frequency interval w >
3w, was neglected, i.e. an upper frequency cut-off was applied. Thus the frequency
spectrum was taken as

S(w) = S(w) HBwp — ), (8)

in which S(w) is measured spectral density of free elevation (S;;(w) in the pre-
vious section).

As the wave is unidirectional, the formulae describing the moments for pro-
cesses £, u (Part 1) become much simpler. Using a polar coordinate system
(k,6) in the k-vector plane, a directional spectrum F(w,0) is introduced satis-
fying the relation (154)*. Since the wave is unidirectional, integration over 6 may
be carried out immediately, giving

n

ﬂm:[h@mw. 9)

-Jr

In the simplified expressions for unidirectional seas corresponding to equations
(86)* to (88)* and (120)* to (124)* only the frequency spectrum appears. In the
numerical calculations the integrands are expressed in terms of frequencies o
and o' by the dispersion relation (6). Relevant formulae for these simplified
expresions are presented in Appendix A.

Double integrals ... S(@)S(w)dwdw were calculated using a highly
W v @

efficient iterative procedure described in the previous section.

Figures 22 and 23 show the observed probability distribution for horizontal
and vertical velocities for the different elevations for Case 5. Figures 24 and 25
show the distributions of the same quantities for Case 6. In the same figures
the continuous parts of the density function given in equation (48)* are presented
leaving out the discrete part. The observed probabiblity distribution for time series
i; and w; are estimated and then scaled in the same manner as the surface
elevation ¢; (see equation (4)). The only difference is that the modified velocity
values given in equation (1) which are equal to zero and correspond to ¢; <z,
are not counted in the appropriate bin. For the elevations z = —0.05m and z =
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0.00 m the theoretical results (when the emergence effect is taken into account)
are in close agreement with the observed values. When the measurement point
of the LDV station is above the mean water level the agreement is slightly better
when the non-linearity of the wave motion is included, i.e. formula (32)* compares
better with the experimental data. For the lower position of the LDV station the
differences due to weak second-order non-linearities are marginal. However, the
emergence effect is still important for elevations z > —3o;. In Figures 22, 23 and
24, 25 the Gaussian probability density function is marked for comparison.

The density functions for horizontal velocity component are generally skewed
while those for vertical velocity are non-skewed.

Figures 26 and 28 show the variation of the mean value and standard deviation
along the z-axis for horizontal and vertical velocity, respectively. It can be noted
that differences between theoretical values due to second-order non-linear effects
(equations (45)* and (46)*) and without these effects (equations (49)* and (50)*)
are negligible. Only slightly better agreement for the standard deviation of hori-
zontal velocity in the second order approximation can be noticed. The observed
values show a high degree of agreement with theoretical values obtained with the
emergence effect taken into account and also compare well with the findings of
Anastasiou et al. (1982a, b). However, for the mean value of the horizontal ve-
locity, the observed values do not compare well with those obtained theoretically.
It seems that the existence of the return current in a confined wave flume could
be an explanation of that departure. The emergence effect “produces” a positive
mean value of the horizontal velocity (an apparent current) in the vicinity of the
mean water level. This current, directed in the positive x-axis, has to be balanced
by the return current. In this way the measured values of the horizontal com-
ponent of the particle velocity will be influenced by the back flow in the wave
tank. In fact it should be stated that the theory presented in Part 1 in the case
of horizontal velocities can not be verified by the data taken from a closed wave
flume. These theoretical results may be valid only for waves in the open sea. Note
that we are not able to introduce the simplest solution suggested for the return
flow problem, i.e. assumption of a uniform distribution. We operate in the domain
z € [—h, 00) and such an assumption would not have made sense.

However, we can rephrase the problem. If we believe that the results obtained
in Part 1 are correct, then we can suggest that the difference between the pre-
dicted and the measured values gives an estimate of the return current in the
wave flume! In Figure 27 the measured mean horizontal velocities are marked
with stars for wave cases 118 and 124. The dashed line presents the theoretical
mean value of the horizontal velocities with emergence effect taken into account,
according to equation (49)*. Open circles show the estimated values of the return
flow as described above. It should be emphasised that the only “true” objects in
that figure are points for the measured and estimated velocities of the mean hor-
izontal velocity and the estimated return flow, respectively, as well as the curve
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for theoretical mean horizontal velocity. The solid lines for the measured mean
velocity and the estimated return flow should be treated as “intuitive guesses”
of the appropriate vertical mean velocity profiles. They were obtained by use of
cubic spline interpolation.

The interpolated profiles as well as the theoretical values for the positive mean
value of the horizontal velocity were used to estimate the measured positive and
negative total flows g, g, , respectively, and the predicted positive total mean
flow g*, induced by the waves, and the estimated return flow g—. Let us denote

A + 4+ Xm
lg*|’ 2

where Agm =g} +4q, and Aq =g* +¢~. The values g* obtained from the-
oretical formula (152)* for wave cases I18 and 124 are presented in Table 4. It
denotes the positive total mean flux calculated by numerical integration with the
spectrum S(w) estimated from the time series Z. Table 4 furthermore shows
the quantites Ag, Ag, obtained from numerical computations together with the
coefficients x and x,,. Note that the above values (except the values for g*
which are calculated from the theoretical expression) are influenced by the au-
thors’ “intuitive guess” expressed in artificial lines and that they should be treated
as rough estimation. Nevertheless, the numerical results obtained for xs in (10)
of the order of 5% (see Table 4) indicate that the constraint of zerp net mass flow
seems to be fulfilled.

Table 4. Numering results for Wave Cases 5 and 6

Wave | g% Agq X q; Agm X
Case | (m%~!) | (m%) (m?s~1) |  (m%~))
5 0.0115 1.61-10~* | 0.014 | 0.0082 | 3.76-10~* | 0.047
6 0.0145 | —9.18-10~* | 0.061 | 0.0096 | —6.38-10* | 0.064

Zero mean value of vertical velocity for all elevations follows from formulas
(45)*, (123)* and (130)*. This agreed very well with observations, cf. Figure 28.

Figure 29 shows the skewness of the horizontal velocity calculated with the help
of (124)* and (125)* (when weak non-linearities are taken into account). These
values appear to be slightly negative, which is in close agreement with measured
skewness at the elevations deeply below the mean water level where the emergence
effect is not important. Anastasiou et al. (1982b) also noted the negative skewness
values for horizontal velocity. Due to the emergence effect the skewness becomes
positive close to the mean water level, cf. Figure 29. The theoretical predictions for
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the skewness of the horizontal velocity with emergence effect taken into account
(for cases with and without second-order non-linear effects) are also presented in
Figure 29. They were obtained by numerical integration of the probability density
(32)* and compare well with observed skewness.

The skewness of the vertical velocity, for points below the mean water level,
is zero in accordance with equation (128)*. This is confirmed in Figure 29 where
the calculated skewness of the measured vertical velocities is marked with open
circles.

5. Conclusions

Following the development of the theoretical predictions, wave surface and wave
kinematics measurements are analysed, with particular emphasis on the near sur-
face kinematics. For wave cases I18 and 124 generated from an almost linear
wave surface spectrum, it is demonstrated that non-linearities play a marginal ef-
fect on the measured kinematics and that non-Gaussian parts of the statistics of
wave kinematics mainly relate to the emergence effects. For a sea state generated
from a more strongly non-linear surface spectrum it is, however, expected that
the effects on the kinematics from the surface non-linearities would have been
significant.

Excellent correlation between the statistical measurements and theoretical re-
sults presented in Part 1 has been found, thus demonstrating the usefulness of
this theoretical development. The only difference found between predictions and
measurements being that for the mean value of the horizontal velocity near the
free surface.

The theoretical results of this study, when applied to horizontal velocities, are
valid only in open water. It follows that these results can not be directly verified
with measurements taken in a wave tank. However, if we postulate that these
theoretical results are correct, then we can suggest that the difference between
the predicted and the measured values gives an estimate of the return current
in the wave flume. The postulate that the formulae obtained in this paper are
correct is supported by two factors:

1. That the expression for the total mean flux in approximation is known and
well-interpreted, as was mentioned above.

2. That the approach for estimating such stochastic properties of random wa-
ter wave kinematics, that are not influenced by the return flow (i.e. mean
value of the vertical velocity and standard deviation for both horizontal and
vertical velocity components) agree very well with the measurements in the
wave flume.

Experimentalists do not normally study kinematics in the free surface zone.
This is mainly due to technical difficulties associated with data collection in this




48 W. Cieslikiewicz, O. T. Gudmestad

zone. The measurements have usually been stopped at an elevation where inter-
esting phenomenon appear. The first measurements of wave kinematics near the
mean water level (up to one standard deviation of the surface elevation above
that level) were as such reported by Anastasiou et al. (1982a, b). The data set
which has been examined in this paper is, however, unique in the sense that it has
been possible to examine the yariation of the velocity along the vertical axis up
to a level of about four standard deviations of the surface elevation and down to
the bottom of the wave flume with measurements spaced close enough to prepare
the profiles for the statistical properties of the velocities.

Reviewing the 118 and 124 wave cases, currents in opposite directions to each
other have been noticed. While the emergence effect explains the existence of the
current in the direction of wave advance, the nature of the return current which
appears just below the mean water level is still unresolved (at least for irregular
waves). To answer the question why this layer is “preferred” by the backflowing
water, it may be necessary to take into account the viscosity of the fluid in the
near boundary regions and the vorticity which diffuses and convects throughout
the wave flume. Energy dissipation and the turbulence in the free surface zone
may also be important factors which influence the shape of the mean horizontal
velocity profile. For a complete study of the problem of the return flow in a
flume, the full three-dimensional geometry and details of wave absorption need
to be considered.

Further work will concentrate on evaluation of other data series to examine
the influence of wave steepness on wave kinematics and on further prediction of
return flow in a wave flume (see also Gudmestad and Haver 1993).
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Appendix A

In this appendix the formulae for parameters of the probability distribution for
velocities in the one-directional case will be given. In the notation the following
equivalences are used ,
2 ’
=L =2 (A1)
g 4
and for a given angular frequency w, the wave number k is calculated by the
dispersion relation (6). We leave the equation numbers as in Part 1 marking them

additionally with primes. The relevant formulae are as follows:

- _lf"k‘ 1_k2)'§( yd (86))

10 = 2 ( zi w)aw,
pap = f S(w)dw, (87)
H30 = f f K3(w, @) S(w) S(@) dwdd/, (88)

0 o
Kayp(w, @) 2 B(w, ») (89)
30\w, T s )
N

B(w, @) = B~ (w, @) + BT (0w, »') — kk' + (E-i-;fd')\/zk_", (90)

(Ve JI?)Z (k' F7F) + (VE £ VF) (VRR VR
(V£ \/Ez — [k & K'|th] k £ K|

B (w, o) =

» (91)
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. %(kz B K= 0 -, (92)
mg; = for v=1,3, (119)

k* ch2k(z +h) +1~

Hop = J & T ch2kh+1 it (120)

wiy =8 f FAZETD L 3wy do, (121)

w = f \f i Chk(”h) S(w)do, (122

W =0, (123)

ph = f f K% (0, @'; 2)S(w) S(o') dwdd, (124"
©w o

Ky, 0';2) = 3gJ§£kf=; [k-K)C (w,0';2)

T , 1 Chk(z + h)chk'(z + h) ,

+ k+K)CH(w, o;2)] Giharn  4¥)
B*(w, @) chk*(z +h)

+ Fooop s ’ ’

C (w,w,z)_ﬁiﬁ T (126")

k= |k+k), (127)

K% =0, (128))
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K; (0, 0';2) = 1/7:-‘5‘;3; [(k —K)C (0,0;2) + (k +K) CT (0, 0'; 2)

2K’  ChKk'(z +h) y
+ﬁ3(ﬂ),w)w]. (129)
K8 =0, (130)
- ol L gkl chk'(z+h) _E_ .. Chk(z +h)
K@ @32 =2 = =arn | £°@°) "k

+ 2[(k -K)C (w,0';2) + k+ k) C"'(w,w’;z)] ] . (131)

" ) ShE'Gz+h) _ oy " T shk(iz +h)
Klz(w’w’z)_g——shk’h [B~ (w, o) — BY (0, &) kk]—shkk
- \% [lk —K|thlk —K|h D™ (w, w';2)
—lk+K|th|k+Kk|h DY (w, o'; z):“, (132)
+
Di(w, 0’ 2) = C¥(w, ' 2) M (133"

chk*h

Appendix B

This appendix contains all figures discussed in this paper.
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plot—observed values, ——————— second-order according to (32)*, — — — — first-order ac-
cording to (48)*, «+-+--eeeeeeenes first-order without emergence effect (Gaussian). Wave case 124
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Run 124_11 LDV: z=0.00m
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Fig. 25a. Continuous part of probability density function of vertical velocity for various z; bar
plot—observed values, ————— second-order according to (32)*, — — — — first-order ac-
cording to (48)*, ««+--ervveneen first-order without emergence effect (Gaussian). Wave case 124
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Wave Case 118
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Fig. 26a. Mean value and standard deviation of horizontal velocity as functions of elevation z; * ob-
served values, ————— second-order, — — — — first-order, «----ereeeeeeee first-order without

emergence effect taken into account. a) Wave case 118, b) wave case 124
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Fig. 26b. See Fig. 26a
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Wave Case 118
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Fig. 28a. Mean value and standard deviation of vertical velocity as functions of elevation z; * ob-
served values, ——————— second-order, — — — — first-order, +--+eeereeennns first-order without

emergence effect taken into account. a) Wave case I18, b) wave case 124
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Fig. 28b. See Fig. 28a
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Wave Case 118
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Fig. 29a. Skewness of particle velocity as function of elevation 2z; horizontal:
second-order, — — — — first-order, - — - — - —  second-order without emergence effect taken
into account, * observed values; o vertical observed values. a) Wave case I18, b) wave case 124
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Fig. 29b. See Fig. 29a




