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Abstract

This paper presents the theoretical development of stochastic properties for orbital
velocities of random water waves in intermediate water depth. Both emergence effect
and weak nonlinear effects are studied. An analytic formula for probability distribu-
tion for velocities modified by the emergence effect, as well as by non-linearities of
the wave motion in intermediate water depth is developed. This probability function
gives us the first statistical moment, the second statistical moment for modified veloc-
ities in an analytical form, and by numerical integration the third statistical moment
for modified velocities.

The theoretical formulae for the statistical moments for surface elevation and for
velocities of up to the third order, with non-linearities of motion taken into account,
in case the emergence effect can be neglected, i.e., below the surface layer, have been
developed. This includes a generalised formula for free surface elevation setdown and
calculation of the asymmetry of the horizontal velocity.

From the first statistical moment of the modified horizontal velocity, the mean
flux between any two levels is obtained. When the integration is carried out from the
bottom up to +o0, the formula for total mean flux is obtained.

In Part 2 of this paper (Cieslikiewicz, Gudmestad 1994b) the theoretical predic-
tions are compared with measured kinematics. Moreover, in the vicinity of the mean
water level, currents in two different directions are noted. Firstly, the emergence
effect gives rise to a current at the mean water level in the direction of the wave
advance. Secondly, a flow in the opposite direction, interpreted as a return current
in the wave flume, is noticed just below that level.

Theoretical prediction of the measured kinematics has allowed for a better esti-
mation of the return flow in the wave flume.

1. Introduction

For many applications in coastal and offshore engineering, it is necessary to know
the water wave kinematics under the waves (Tgrum and Gudmestad 1990, Sarp-
kaya and Isaacson 1981). Normally a random offshore wave field is characterized
by a sum of sinusoidal waves with individual energies given by the wave spectrum,
however, the principal shortcoming of linear wave theory for irregular water waves
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is its inappropriateness for determining kinematic and dynamic parameters near
the still water level.

Although some improved proposed methods exist for predicting kinematics in
the vicinity of the water surface such as Wheeler’s method (Wheeler 1970) and
Gudmestad’s method (Gudmestad 1990), it should be noted that these represent
extrapolations of linear theory and do not satisfy the Laplace equation for fluid
flow.

Another reason for deviation from linear theory is caused by the fact that the
free surface fluctuates with time, such that a fixed point in space in the vicinity of
the mean water level is not submerged at all times but emerges from the water in
some phases of the wave motion. This makes the probability distributions and the
corresponding spectral densities different from those of continuously submerged
points. This emergence effect (CieSlikiewicz 1985, Cieslikiewicz and Massel 1988,
Cieslikiewicz and Gudmestad 1993), as it shall be referred to in this study, is also
known as free surface fluctuations phenomenon (Pajouhi and Tung 1975) and
has been taken into account in this study following the approach of Tung (1975).
This wave theory with the intermittency of submergence taken into account is,
furthermore, referred to in the papers of Anastasiou et al. (1982a, b) and Isaacson
and Baldwin (1990) as the intermittent random wave theory.

The influence of the emergence effect is essential when determining the
stochastic characteristics of particle kinematics near the mean water level. The
difference between properties when taking into account the emergence effect and
when ignoring it decreases considerably for points far from the free surface. On
the other hand, it is well known that wave energy is concentrated in the vicinity
of the still water level. Thus, the hydrodynamics in this layer is of considerable
importance and should therefore be determined with a high degree of accuracy.

Laboratory and field measurements of wave kinematics with emphasis given
to the mean water level zone have been reported by Anastasiou et al. (1982a, b)
and by Skjelbreia et al. (1989, 1991). These latter measurements will be used in
Part 2 to demonstrate that the emergence effect modifies the statistics of linear
wave theory near the mean water level according to theoretical predictions.

In addition to the emergence effect on statistics of wave particle kinematics,
the influence of non-linearity of the motion itself will be discussed in a form similar
to that of Longuet-Higgins (1963). The background for this study is presented in
Figure 1.

2. Probability Distribution of Modified Random Process Y(z)

In this section the formulae for the probability density and first two statistical
moments of particle velocities will be derived.

Let us consider the orbital velocities u(x, z,?), where x = [x1,x2] is the lo-
cation vector on the horizontal plane, the z-axis is directed vertically upwards
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Fig. 1. Background for the study

and ¢ is the time. It should be pointed out that the non-random parameter z
of this random field is chosen from the interval [—h, ¢], where the upper limit
¢ (the free surface of the wave) for a given x and ¢ is a random variable (h is
the water depth). This means in fact that u(x,z,¢) is not in agreement with the
definition of a random field. In order to treat velocity as a random field it can
be said that for points above the free surface, the velocity is equal to zero with
the probability equal to one. This is not obvious from a “philosophical” point
of view because it is difficult to speak about zero velocity if there is no object
(i.e. no water particles in this case) for which the velocity is measured. But this is
consistent in the experimental sense since when the point under consideration is
above the free surface, the velocimeter will show zero value.

For the random process Y(z), where z € (—oo, X], let us then introduce the
random process Yx(z) for z € R! modified due to the random variable X, as
suggested by Tung (1975) such that:

Y(z) for z <X,

Yx() = { 0 for z> X. )

For the sake of simplicity, the subscript X will be omitted henceforth.

For any z € (—oo, X] the probability density function for random variable
Y(z) may be estimated, by the theorem of total probability, according to the
following equation

f?(y) = f?|X<z(y) P[X = Z] o g f?|Xzz(y) P[X = Z]! (2)
where the conditional probability densities may be written as

f—Y_|X<z(y) = 80’) (3)
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in which 8(-) denotes the Dirac’s 8-function, and from the definition and equa-
tion (1)

}o fxy(x,y)dx
frx=:0) = “PXsz (4)

where fxy denotes the joint probability density function for random variables
X and Y. Hence, in order to calculate probability density function fy(y) for the
modified random variable ¥, the joint probability density fxy must be known
and the integral appearing in equation (4) should be calculated.

The modified velocities of a wave field can now be defined:

u(x,x,t) for z<¢(xt),
0 for z > ¢(x, 1),

ux,z,t) = (5)
in which u = [u1,u2,u3] and © = [iy, itz, 43] are the vectors of unmodified and
modified water wave orbital velocities, respectively.

Note that the original notation from Tung (1975) @ =wuH(; —2) in which
H(-) is the Heaviside unit step function is not used since in the authors’ opinion
u(x,z,t) for z > ¢(x,t) is not well defined.

It is assumed that ¢(x,?), u(x,z,t) and T(x,z,t) are stationary in time and
homogeneous with respect to x. Thus, the results obtained for the random variable
X and processes Y and Y may be applied directly to the free surface elevations
¢ and components of u and #, owing to the analogous form of equations (1)
and (5).

If the non-linearity of the wave motion is taken into account, the random field
of the free surface elevation may be presented, after Longuet-Higgins (1963), by
the following formula:

N N N
L(x,0) = Eaf(m 0& + Z ij (x, t)6:& + ok (%, )Ei &b + -+ - (6)
i=l1 i,j=1 i,j.k=1
where o;(x,t), a;j(x,¢t),... are non-random functions, while & are random vari-

ables, assumed to be independent and symmetrically distributed around zero. It
is suggested that a similar representation may be used for the non-linear random
field of particle velocity u(x, z, t). Thus, in order to determine the stochastic char-
acteristics of random water wave field, let us examine the random variable X and
the process Y (being a function of, say, z) assuming that they can be written in
a form analogous to (6):

N N
X= Zaf&'i + ) kil +
i=1

N
oyjkki&iée + -+ (7)
i.j=1 i,j.k=1
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N
Y@) = )‘_jﬂ. @& + Z B @& + Y Bix@&&i&+- -, ®)
i,j=1 i,j.k=1
where constants «;, o;;,... and functions B;(z), Bij(z),... are not random and
symmetric in their suffices. It is assumed that for i =1,2,..., N
<& >=0, 9)

where the symbol < - > denotes the expected value of the quantity enclosed in
the bracket. Moreover, let us assume that with each value of i is associated a
vector x; and that a certain function F(x) exists such that the following relations
hold true

< 'E,'z >=¥ (10)
and
V; - 0 for N— oo
Y ¥ = F(k)dk + O(dx?) (1)
kedx

for any small but fixed region dk. V] is the variance of the random variable £;.
Since the second order approximation is assumed, we examine the following
random variable

X= Za.ei + Zj oijik (12)
i,j=1
and the process

Y@) = Zﬁz 2)& + Z ﬁu (Z)EIE] (13)
i,j=1
The mean values, and the central statistical moments, as well as the joint
central statistical moments of the second and third order for X and Y can be
easily expressed in terms of the variances V; by use of (12) and (13). Since we are
interested in the limit N — oo, the terms < E,-“ > and < 5? > can be neglected
and only terms of the lowest order of V; will be left. Using the notation

Umn =< (X— < X >)"(Y-<Y>)" > (14)

the statistical moments for X and Y are found to be given by

N
mp =< X>=) o;V
t=1

“20_UX Zalal +2 Z auauVV Za,a’, i ) (15)
i=1 Lj=1 =1

N
u3p0 =6 ) ooVl J
ij=1
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N
mo(2) =< Y(z) >= _Z:lﬂii(z)yi l
N 1=
pe =op =2 @BV
N N = (16)
+2_Zl Bij @)Bij @ ViV = _}:lﬁi(z)ﬁi(Z)VE
ij= i=
N
pos =6 __Zl Bi(2) B 2)Bij @)ViVj
ij=
N N N )
p11(@) = Zldiﬁf(Z)Vi +2 Y ajfj@ViV; = L aibi@V
i= ij=1 ek
N N
pa1(z) =2 Zlaiajﬁij(z)VEVj +4 Y aipi@aij ViV L. (17)
ij= i,j=1
N N
pn12(z) = 2lzlaijﬂi(z)ﬁj(z)v;‘yj +4 _Zlaiﬁj @) Bij @)ViV;
L= L=

The probability densities for X and Y, fx(x) and fy(y;2), respectively,
as well as the joint probability density fxy(x,y;z) may be found by following
Longuet-Higgins (1963). Introducing:

1 2
Zy) = g 18
) " (18)
the second-order approximation is:
1 1 ;
fx(x) = —Zx" [1 4+ =AoHs(x )] , (19)
ox 6
92 = ——=20) 1+ SAn@H (y')] (20)
y(y;:z) = gy ) o3 3
and
fxyx,y:z) = ————I——Z(y’)Z( )[1+1(A Hyo + 3021(2) H;
xyx,y;2) = crxcry(z).\/ﬁ_(ﬁ n 6 304130 21 21
+ 3r2(2)Hiz + losHus)] ; (21)
where
g e e R
(30H02)?
x —my y —myy x' = Ay’ (=2
x'= y' = nx, ¥ k) = ———

ox oy \/_A—
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Note that my9, ox, A3p are constants while myg;, oy, Aoz are functions of z.
In (19) and (20) H3(-) denotes a Hermite polynomial of the 3rd degree. Note
that for the calculation of Hermite polynomials of the nth degree, the following

relation is used: 5

a 12 12
(—l)mat—me_T = H,(x)e 7 (23)

in which it is assumed that 8°/3x? is a neutral operator. Two-dimensional equiv-
alents of the Hermite polynomials appearing in (21) may be calculated using the
relation:
L SR T T S, 112, 200 0.

_1ymtn = 7 —slytntteyin] — c mye— 3l ryin]

(-1) = By"e Hun(x,y;r)e , (24)
where r = A;1(z) is the coefficient of cross-correlation between X and Y.

From (19) it is found that the probability that the random variable X exceeds

the value z is equal to

P[X>z]= f fxx)dz = Q*(@"). (25)
Here z’ = (z —myp)/ox and
1
o*(y) = 0(y) + gkson(y)Z(y). (26)
in which o
0) = f Z()dz. 27)
4

Calculation of the conditional density in equation (4) with fxy in the form
given by (21) reduces to evaluation of the following integrals:

+00
f Hup ', y's1) ZG) Z[nx', y'; r)]dx. (28)

X=z
There are two kinds of such integrals—when m > 1 and when m = 0. In the first
case we obtain

+00
[ Hon ', y':7) 20" ZInGe', y' )] dx
xX=z
400
_ox [ 3
2 ax’
xf___\z’

=ox Hn-1n@',y"; 1) Z(y") Z[n(, y'; r)]. (29)

[Hm-1n(X’.}"; r) e'%b’h"z(""""’)l] dx'
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In the case of m = 0 we can write

+o00
f Hon ', y's )ZG) 2’ y's 1)) d

x=z

. +00
> / ’ ak P i
- g (Z) Hy(y )Z(y ) f(—l)ka[n(x » ¥ ;r)]dx

= oxvA {H,.(y') Z() QIn@.y'sr)]

1 < r 4
e (y);( V() 75) Bek0)

+00 3 ak—l

k—1 —yin

) f dy [H) e : ] dy] e
y=n(z'.y"ir)

and then, by equation (23), one can obtain the following expression for the inte-
gral:

+00
fH&x(x’.y';r)Z(y')z[n(x’,y’;r)]dx

x=z

= ox/AZ() [H,.(y’) Oln.y's 1] + ZIn@.y': )]

x :;(—l)k (Z) (ﬁ)k Hok(0") Hea[n@', y"; ?‘)]} . (31)

in which Hp(x) = 1.

Equation (21), combined with the use of (29) and (31) (where by equation
(25) P[X < z] =1 — Q*(z")), leads to the probability density for ¥(z) in the form
obtained by Cieslikiewicz (1985)

1 1
iz = [1- Q*@)BY) + —=Z(") [[1 + —los(z)Hso")] x Q[n',y’;n]
oy(z) 6

1
e e
6+/A

Function G in the above formula is:

Gy, 7)) = AHn(Z,y';r) + 3A Hi1 @', y';r) + 3A2Hop (2, y'; 1)

GO\ 2)ZIn. Y r)l] . (32)
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_ms% [’ 20, y';r)] - 3V ArHi[n@, y'; 1) Hi (")

+ 3AH2(y’)] : (33)

Note that (32) represents an extension of (20) by including emergence effects

(Figure 1).
The probability density function (32) can be used in evaluation of the first two
statistical moments of the modified process Y(z), i.e.

+00

<¥Y>= fyfy(y;z)dy (34)

—Co

and
+oo

<7%= [ yfrpind. (35)

—00
In order to calculate these moments, the values of the following integrals
+00 +00
to= [ [ Honx,yin 202006, yir))ds dy (36)
206 g
for k=1,2 and m+n <3 should be known. Integration by parts results in
I}, =0, forn>2 and I2,=0, forn>3. (37)

Successive integrals are given as

400

= f y Ho(@',y:r) Z0) ZIn@. y: )] dy
2

400
d
=i lZ(z’) fyZ[q(y,z’;r)]dy] =rvA H(Z') Z(Z), (38)

where the following relation was used

Zy) Z[n(x,y;r)] = Zx) Z[n(y,x; r)]. (39)
Furthermore
400 P
Iy =- f y ay {Hw(l',y;-")Z(y)Z[n(z’,y;r)]} dy. (40)

—00
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Integrating by parts, using equation (39) leads to
” +00
Ly=-o lZ(z’) [ Z[n@. 2" r)]dy] = vVAH () Z(E). (41)

Since

%Q[H(Z’,y; Nl= = Zn@. i) 42)
we have
+o0
Bo=—va [ (g—yzm) Ol yinldy =rVBZE).  (43)

Successive integrals for k =2 can be obtained in the same manner. Their values
are as follows

B =vA[Q* @)+ HiE) Z@)],  By=vAH(E)ZE) i
I, = 2J/Ar Hy(2) Z@), % =2/AZ() '

By use of equations (37) and (44), we obtain from definitions (34) and (35),
the mean value and the second moment of the modified process Y(z) in the form

- 1
<Y>=muQ*'@) + oyZ(Z") [r + - (rJ\.30H3(Z') + 3x21 Hy (z’))] i (45)

< V%> = (6} +md)0*@) + 03Z(2) (r2H1 )+ %AgoH.;(z’)

1
+ riaHy(@') + 112) + 2mp10vZ(2') [r + 3 (rhsoHa(Z’)

+ 3Ap Hy (z’))] , (46)

The variance a%(z) can be calculated using the following formula
cr-%,-(z) =< T - 2 Vs>, 47)

In (32) terms including An, for m+n =3 represent non-linear effects. If
one omits these effects, the probability density given by equation (32) will assume
a simpler form, as given by Tung (1975):

fo:2) = [1 - QEYB) + ——ZO) I,y 1) (48)

oy(z)
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where y’ =y /oy. Equation (48) represents the emergence effect in equation (32)
(Figure 1). Similarly for moments < ¥ > and < ¥2> we obtain:

<Y>=royz@), (49)
< Y= 0l0@) + ofr’2'Z(2)). (50)

It can easily be shown that with z — —oo the probability density for process
Y given by (32) becomes equal to the density for the process Y as given by
equation (20). From (45), (46) and (47) it follows that:

: T . < 2 AR, g, 2 _ .2
z_lf[_nm<Y>_mm, z_l:x_noo<Y >= 0oy +my, and z_l&m og=oy. (51)

Thus the emergence effect ceases to be of significant importance for points located
deeply below the free surface.

3. Application to Water Gravity Waves

In order to calculate quantities mjp, ox and A3 appearing in (20) and (22)
(remember that X and Y play the role of surface elevation ¢ and velocity
component in a wave field, respectively), the central statistical moments uy and
u3p for surface elevation should be known. Moreover, in order to determine the
parameters of the probability function as given by equation (32) for modified
velocities, the statistical moments for unmodified velocity quantities should be
calculated together with the joint moments for them and ¢, up to the third order
inclusive. Starting from the basic hydrodynamic equation for fluid flow, i. e. the
Laplace equation, and the non-linear boundary conditions at the free surface,
these statistical parameters can be calculated based on the free surface spectral
density. This is carried out in this section after Cieslikiewicz (1989).

Consider a random field of surface waves propagating over a horizontal bottom
in which the surface displacement ¢(x, ¢) as well as particle velocity u(x, z,t) are
stationary in time and homogeneous with respect to x. Let the free surface be
represented by z = £(x,¢). With the assumption of irrotational motion and an
incompressible fluid the continuity equation assumes the form

Agx,z,t) =0, (52)

where ¢(x,z,t) denotes the velocity potential, i.e. u = Vg.
The kinematic and dynamic boundary conditions at the free surface, that must
be satisfied by ¢ and ¢ are

2_E+v¢.v(g-—z)=0, forz =¢, (53)
¢ 2
+= (V¢) +g¢ =0, forz=¢, (54)

at
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while at the bottom we have

i}
—a% =0, forz=—h. (55)
In the second-order approximation, functions ¢ and ¢ may be represented

as follows

=gV 459, (56)
¢ =D +¢@. (57)
The linear parts of these functions are
NI
D= Zap COS Xp, (58)
p=I
o0 — i chky(z +h) (59)
‘r chk, " chkyh it Xp»
where gl
p%p
Cp = —=r— (60)
kp
and the phase angle
Xp = Kp - X — wpt + 6. (61)

In the above formulae k, = [kp1, kp2] denotes the wavenumber vector (kp = |kpl),
wp is the angular frequency, while 6, is the phase shift. The following notation
was also introduced

k, = kp thkph. (62)

Forany p=1,..., N' the angular frequency w, and wavenumber k, satisfy
the dispersion relation 5

w? =gy (63)

in which g denotes acceleration of gravity.

It is also assumed that the constant amplitudes a, and the phase shifts 6,
are chosen randomly so that a,cos6f, and a,sinf, are zero-mean, statlstlcally
independent and jointly normal, with 6, uniformly dlstrlbuted (Longuet-Higgins
1963). Assuming furthermore that

"V, = 0, for N — o0, (64)
where V, =1 < af, >, the following relation holds true

>V, = FO(kdk, (65)
kedk
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in which F(V(k) is a first-order part of the free surface elevation spectrum F(k)
(see Appendix A).

From the system of equations (52) to (55), it follows that ¢® and ¢® must
satisfy

Ap@ =0, (66)
82 P 9 d 32 d

(32+55 )¢ =5 (9°) ~s0% (g3 +855) 87 frz =0 (67

34,{2) 32¢(1)

2 _ Vo'l ¢Y)
¢ g[ ot 2( ¢ ) +4 9z ot Z_O’ (%)
and @

a‘gz =0, forz=—h. (69)

Substituting (58) and (59) in (67) gives
(i @
= +gaz ¢ =——Ec,,cq[[(wp w)(Ky - Ky + Koky)

+ (wgRp — “’PRq)] sin(xp — xq) + [("’p + 0g)(p - kg ~ Kpky)

+ (@ Ry + wpRp) | sin(xp + xp) |, forz=0, (70)
where 1
72 '
Ry=5 (g -%). forp=1...N. (71)

The solution to (70) that satisfies boundary condition (69) may be written in
the following form:

1 : ;
pP(x,z,t) = > ; C—’% [C;q(z) sin(xp — Xg) + Cp, (2) sin(xp + Xq)] . (72)

where for p #gq i hk* e +h)
c z+

B,
+
CP‘? (Z) \F ‘/:' Ch kpqh *
2 ~ o~
(kp - kg F kpkq)

(V= R) (Vo= ) (Vo= B) -] o

(73)

Il
N
=
H
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and for p=g¢
+ _ Bi ch&kg+h) c—=01
2/ky i fk"h : (75)
o e L B, =0
in which
kpg =kp — kg kog = Kp + kg
kpg = IKpg kg = Ik, | : (76)
kpq = Kpqthkpgh kg = kpqth kg

Substituting (58), (59) and (72) into equation (68) we find the second-order
correction term for the free surface elevation

P, 1) = 12 fr {[Bp_q + By —kp kg + (K +F’Eq)vzpzq]

i fok

X COS Xp COS Xg + [B;q - Bl = Epzq] sin x, sin Xq} A (77)

It can easily be seen that expressions (77) for ¢@ and (72) for ¢@, in the
limit & — oo, become equal to those found by Cieslikiewicz (1985) for deep water.

In a second-order approximation, the free surface elevation ¢ can be ex-
pressed in a form similar to (12). For the special point x =0 and time ¢ =0 we
can write

N N
{= Zai&' + Z aij&i&j, (78)
iml ij=1
where
et . a; cos; i=1,...,N,
il i = { cap ity 1= N Lo 2N )
while

1 i=1,...,N,
o = ; (80)
0 i=N+1,...,2N,
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1 [ o~ ~ Pt P~
= | Bj + Bj —ki -k + (ki + ) kikf]
2./kik; L
' T
aij = 1 }.., -BJ - B} _EEJ] (81)
2\ kikj -
i,j=N+1,...,2N,
| 0 otherwise.

It can be shown by using equation (75) that the constants «;; have the following
form

o el L
K th'kh fth ki +3 P
4 th® kih

= % thikh -3 (82)
SR i=N+1,....2N'
4  th*kh

Since the representation (78) of the free surface elevation is identical with
formula (12), we can use equations (15) when determining the statistical moments
for that random variable. We have thus

my =<¢ >= ia - iNP th kph — V (83)
10 = a il : — ) thzk B p
N N
un=) ol Vi=) V, (84)
i=1 p=1
NI
mo—ﬁza,a,a,, ViVi=6 Y apVpV,. (85)
i,j=1 p.g=1

Due to relation (65), the above formulae can be rewritten in integral form as

mig = % f k(1 — th=2 kh) FV (k) dk, (86)
k
lisg = f FO (k) dk (87)
k
and
po = [ [ Kootk 1) FOM) FO®)dkak, (88)

k K
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where 3
Ka(k, K) = — Bk, k), (89)
NPT
Bk, K) = B~(k, K) + Bt (k, k) — k- K + (k + K)VkK', (90)

Bk, K) = [(\/E £ VR (kK F ) + (VR V) (VRREVE )]
x [(«/Ei \/17)2 — k+K|th |k:hk’|h]—l . (91

In these formulae

R= %(k2 -k R= %(k’z ~ K% (92)
and ~ N
k=|k|thklh Kk =|K|th[K|A. (93)

Expression (86) for the mean water level in the case of idealised narrow spec-
trum FO(k) =o28(k— ko) gives <¢ > = —alko/ sh2koh in which ko = [ko|.
If a is a slowly changing random wave amplitude, we obtain the well known for-
mula for mean water level setdown < ¢ > = —5% ElT’Z“iZF . It can be noted, that
for deep water, with 4 — oo the mean value of free surface elevation tends to
Zero

lim mip = 0. (94)
h—co0

It can be shown, after some algebra, that representation (13) exists for the
velocity potential. For special point x =0 and time ¢ =0 we then have

N N
$@ =Y B@E+ ) Bij@EE: (95)
i=1 ij=1
where
0 I = 1, e N’,
Bi = g chkiz+h) . ., ) (96)
~\£ ik i=N+1,...,2N,

1 g =

i=1,....N, j=N+1,...,2N,

Bi=1_1/8 [~ + (97)
2 m[cij(2)+cij(2)]

i=N4+1,...,2N, j=1,...,N,

0 otherwise.
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If we write the orbital velocity as the sum of the linear part and second-order

correction term, we have

u=u® +u®, where u® =vp®, u?@ =vp?.

Differentation of equations (59) and (72) (for x =0 and ¢ = 0) gives

N N
w@) =Y B @&+ Y By @&k,

i=1 i,j=1

where
chk;(z +h) o .
J—kw Chk,h L= ,...,N,
i=N+1,...,2N,
for v=1,2
l i=1.... N,
/_shk,(z+h) g ;
shk,h i=N+1,...,2N',

[ 1 [g T i ]
5 IEE- -(kiv — k)G (2) + (ki +Iq,,)C3,-'(z)_

fod = Nens s Ny
w— 11 [ -
ﬂU 1 5 Z%- (klv Il kj._,)C,;(z) . (kw +"CJ'U)C£}-(Z)

i,j=N+1,...,2N,

| 0 otherwise,

for v=1,2 and

1 \/k: [k D; (z)—k"’D*'(z)]

i=1,...N, j=N+1,...,2N,

ﬁf—a =9 1 g e e -
B AR )

i=N+1,...,2N, j=1,....N,

. 0 otherwise,

(98)

(99)

(100)

(101)

(102)

(103)
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in which
thk,f z+h)
thih
In the above formulae, the subscript v indicates the vector component, hence,
ki, (v=1,2) is equivalent to the notation  k; = [ki1, ki2].
Making use of definitions (73) to (75) and (103), the values of the functions

D;}E(z) = c,ﬁ(z) (104)

B,f‘j“ (z) in the case i = j can be calculated. For v = 1,2 we obtain after some
algebra
3 i~ Ch i\Z +h . ot
S RASEED
Bi = ' (105)
3 ~ ch2k;(z+h) .
Pty i k; A ¢ L. A =N — 4
4»\/3_ !UJI:lQ Ch?klh ] N +1, 12Ns
where g
1-th"kh
-=— 106
th* k;h (10%)

and for vertical velocities
U
S =0, (107)
Now, let us calculate the statistical moments of orbital velocities. From equa-
tions (16), taking into account expressions for coefficients and functions g*,

we have N
mi =<u, >=y B Vi=0, forv=123, (108)
i=1

N N

e fpeilirn g ., ch2k,(z+h)+1 _

‘,,32_2 l:ﬁ!. ; V,-_zl:,,;pv Th AT V,, forv=12 (109)
= p=

N 2N’
~ ch2kp(z+h)—1
i U3 g3 17 — k P ! 110
ﬂ'[yz ;ﬁ; ﬁ; i p§+lg P Chzkph . 1 v}? ( )
uu_ZN:d_ﬁqu*i g, chkEth),, =12 (111)
”11 — i 1 M Jl_“p=1 }:; pv’ Chkph P = 1, &
ws =0, (112)
u s Uy gliy gl Al kp”kqu
s =6 3 BBy VY =38 3 B |t - ke G
i,j=1 p.g=1 qu

chky(z + h)chk,(z + h)
chi,h chizh

-+ (kpu+kqv)cgq] V,V,, forv=1,2, (113)



Random Water Wave Kinematics, Part 1. Theory 21

N
ug =6 B BB Viv; =0, (e
ij=1

N N
My =2 wiaBy ViV +4 ) iy ViV
i,j=1 i,j=1

Z [(kp» = kqv) Cpg + (kpy + kqv) c;,] V,V,
koky

p.a=1
‘/7""" [.!‘aj;q-{-B+ kp - kg + (kp + k) Koy ]
p.g=1
chk;(z +h)
W WVe, v=12, (115)
N N
uy =2 agBR ViV +4 Y @iy ViV =0, (116)

ij=1 ij=1

N N
uiy =23 @B ViV +4 3 aiB B Vi)
i,j=1 i,j=1

Z kp kpvlcq,[B— + By, —ky - kg

pg=1
. =] chky(z + h)chky(z +h)
+ & + )y "P""] 3 chkphchzh Gl

+2Z:

P q—l

chk,(z +h)
T chkn  PT

‘/E:kqv [(kpu = kqv) C;q + (kpv = kﬂ“) C;-q]

(117)

and

=2 S P Y 44 3 A
i,j=1 ij=

2N
- shky(z + h) shk,(z +h)
2. 8[Bx ok shk,h shkgh

727
P.g=N'+1
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shk,(z +h)

"2 shkgh

. D= (@) -kt D*()] V,V,. (118)

[P‘i pPq Pq " Pq
p= 1q--N’+1

Rewriting the above formulae in integral form, and using (65), we obtain

my =0, forv=1,23, (119)

FOk)dk, v=12, (120)

. ! sz ch2k(z +h)+1
Ho2 =& ch2kh + 1

f FREEE D FOd, (121)
i = f \/— Chk(z+h) FO®dk, v=1,2, (122)
u,'l“‘l‘ =0. (123)
For statistical moments of the 3rd order we can write
ply = f f K (k, K; 2) FV (k) FO (k') dk dK, (124)
where m,n = ..3 and m +n = 3, and where functions K} can be written

in the followmg form

Kbk K;2) = 3gfw [(k —K)C(k K;2) + (k + K) CT (K, K; z)]

chk(z +h)chk'(z+ h)
chkhchk'h ’

in which k = [k;, k2] and

forv=1,2, (125)

Bt(k, k) chk*(z+h)

Rxve  chih

Cik K;2) = (126)

and
kt = k% = [k xK|. (127)

Next
K3 =0, (128)
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Kk k;z) = ‘/f% I(ku —-k,)) C(k, K';2) + (k, + k) C*(k, K’; 2)

2k;, . chk'(z +h) i
+ Te Bk, k) T ] , forv=1,2, (129)
K33 =0, (130)
. . gk, chk'(z+h) | k, ~ Chk(z +h)
K;‘z(k’k'Z)_"E'\/z oy [\/EB(k.k) chih

+2[(ky — k) C(k, K; 2) + (ky +K,) C*(k, K; 2)] ] :

forv=1,2, (131)
Kk K:z) =g s‘h% [B‘(k, k) — B*(k, k) ‘H’]
shk(z +h) 2 g ) = /
— — — —_ | k=K|thk—K|h D" (k K;2)
shkh vk [
— |k +K/[th |k + K'|s D*(k, k’;z)]}, (132)

where functions D+ and D~ are defined as follows:

chk*(z +h)
chkth

It can be seen from the above formulae that the weak non-linearities (within
the frame of the adopted approximation) do not affect the mean values my;
of particle velocities, which remain equal to zero (equation (119)). Variances
Iy given by (120) and (121) of the orbital velocities are left unchanged (see
also Appendix A). However, the non-linearity of the motion leads to non-zero
skewness for horizontal velocity (see uy; for v =1, 2 given by (124) and (125)).
Skewness of the vertical component still remains equal to zero (see g} given by
(124) and (130)).

The influence of the emergence effect on the orbital velocities, as given in (5),
however, leads to a modification of the probability density for the velocity from
that expressed by the equation (20) to the form given by (32). It results also in a
non-zero mean value given by equation (45) for the horizontal velocities and in

D*(k,K;z) = C*(k, K 2) (133)
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modified variances (47) for both horizontal and vertical velocity components. It
should be noted from (45) that the mean value of the vertical component remains
equal to zero in view of (123) and (130).

The above analysis yields the conclusion that the effectiveness and accuracy
of evaluation of statistical properties of velocities depends very strongly on the
spectral density function of surface elevation. Therefore, in Part 2 where measured
data are examined, the spectral analysis will be described in some detail.

4. Mass Transport

In this section the total mean flux in the first order approximation will be consid-
ered. We will operate in the Eulerian frame. Although Tung’s (1975) results clearly
show a positive mean value of the horizontal orbital velocity in the near surface
zone, to the authors’ knowledge, this has not been discussed and interpreted as a
current induced by waves until the recent study of Cieslikiewicz and Gudmestad
(1994a). In Part 2 a comparison of velocity profile measured in a wave flume and
a theoretically predicted mean velocity profile will be presented. Agreements are
good for points situated above mean water level. Mean values of the horizontal
component measured below the mean water level were influenced by the return
current in the wave flume that appeared to be non-uniformly distributed along
the vertical axis. It will be suggested here that the return flow noticed in the
wave flume is induced by the current corresponding to the mean velocity profile
obtained by taking into account the emergence effect.

The results of this section are obtained from the linear wave theory but they
are non-linear quantities in the sense that they involve the wave amplitude to the
second power. Taking into account the emergence effect consists in considering
a modified velocity W(x,z,t) defined by (5) rather than the velocity u(x,z,).
Equation (5) makes relation between @ and ¢ non-linear even though the rela-
tion between u and ¢ is linearized. This kind of non-linearity is due to surface
effects and determines the character of the quantities derived. This non-linearity
is mainly important in the vicinity of the mean water level.

As stated above, in this section the formula for total mean flux for linear
random wave theory modified by taking into account the emergence effect is
derived, but in order to document that the statistical mean value of horizontal
velocity can be interpreted as the mass transport velocity, in the next subsec-
tion the same approach as for random waves will be used in the case of de-
terministic small-amplitude wave. It will be shown that this leads to known and
well-interpreted formulae for mass flux usually obtained in the Lagrangian frame.
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4.1. Digression on a Simple Harmonic Wave in a Deterministic Case

In this section the mean flux for a linear deterministic wave will be calculated.
Consider a unidirectional progressive small-amplitude wave of the form

£(x,t) =acos (kx — wt), (134)

where a is the wave amplitude, k is the wave number related to the angular
frequency of the wave @ by the dispersion relation

w® = gkthkh, (135)

in which h is the water depth that is constant by assumption. The associated
horizontal velocity under the wave is given by

gak chk(z + h)
@ chkh

Introduce extension of u on the z-domain [—A, 0o) by the definition

cos (kx —wt), forze[-h,{(x,1)] (136)

u(x,z,t) =

u(x,z,t) for z <i(x,t),
ux,z,t) = (137)
0 for z > ¢(x,1).
The mean value of u over a wave period T of a deterministic wave is
. /2
mP@) = @z 0@ =1 [ aeznd, (138)
=T/

where the symbol (-} denotes the mean value over a wave period of the deter-
ministic function enclosed in the bracket. In view of (136) and (137)

r(2)

T[u(x,z,t)dt for |z| <a,

m9(z) = (139)
t(@
0 for |z| > a,
where #; and #; are such that
z=¢(x,n) =¢x,t2),
(140)
z=<¢@,t), fory <t=<n.
Carrying out the integration in (139) yields
gak chk(z+h) . z
mf-f) DD, AR sin (arccosa) for |z| <a, (141)
0 for |z| > a.




26 W. Cieslikiewicz, O. T. Gudmestad

Note that for z =0 we obtain n1£-d)(0) = |u(x,0,t)|/m which is “almost” the
maximum value for m(z) since for |z| <a the approximate value of chk(z +
h)/chkh =~ 1. Figure 2 presents the mean velocity profile given by (141).1

To obtain the total mean flux g at a fixed position x (Eulerian frame) we
perform the following integration

s@x.t)
g9 = f m (z) dz. (142)
~h
In view of (141)
a
@ _ gikchk(z+h) . z 14
g g S (arccosa) dz. (143)
-a
By substituting 6 = arccos Z we obtain
k m
@_ _ 82 k(h+acos8) | ,~k(h+acos®)) cin? @ 46 144
9" = Zrwchkh f (¢ e Lt (144)
0

In view of the following integral representation for the modified Bessel function
I,(f) for any integer v

) S
Lifi= [ et/ s sin® 6 do (145)
r(v+4)r(i)s
the integral g® may be finally written as
a
g9 = ‘%h (ak). (146)
Thus, the flow of mass M@ = pg® is equal to

M@ = %Il(ak), (147)

where p is the water density.
For the modified Bessel function I,(f) the following series expansion holds

true
L(f) = Em A TR (i)vm (148)
’ ZnlTw+n+1) \2 '

The mean velocity profile presented in this figure corresponds to the experimental data of 118
random wave case described in Part 2 of this paper. Namely, for the significant height Hs and the
peak period T}, taken from Table 1 of Part2, a = Hs/2, w=2n/Ty, h=13mand k is obtained
from the dispersion relation (135). ;
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Therefore, the flow of mass M@ with an accuracy to the second order in a is

equal to
k 1 (ak\? pga’k E
MO = PBAAK |, _(_) e | S BEE . 2 2 149
s 2| T2\Z) T 7w C (149)

a result first presented by Starr (1947) where E is the average energy per unit
surface area and C is the phase velocity. Note that the above approximation may
also be easily obtained directly from (143) by assuming that chk(z + h)/chkh ~ 1
for |z| <a (see Figures 2 and 3).

0.15

wavei crest

0.05 RN

z (m)
(=]

ot g
s

wave; trough

-0.15
-002 O 002 004 006 008 0.1 012 0.14

mean velocity (m/s)

Fig. 2. Theoretical mean velocity profile for deterministic small-amplitude wave;}
— — — — with an approximation chk(z + h)/chkh ~ 1

In equation (149) we have obtained, in the Eulerian frame, the classical
second-order Stokes expression for the total mean flux of a small-amplitude wave
train obtained in the Lagrangian frame. As mentioned above, this expression was
first developed by Starr (1947) but in a very different way, starting from the in-

tegral fOL ffh(uﬁ +u?)dzdx in the moving frame and showing, by the use of

Green’s theorem, its equality to ffhudz at an arbitrary vertical. The present
approach is direct in the sense that we have used only the definition of the total
mean flux and the expression for horizontal velocity.

The objective of this analysis of the deterministic small-amplitude wave case
has been to document that the non-zero mean value of the horizontal velocity
introduced by taking into account the emergence effect should be treated as a
mass flux velocity.
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4.2. Total Mean Flux for Random Waves

Now, let us consider in the first order approximation (i.e. when A, for m+n =
3 are neglected) the total mean flux q

[g1,g2] with components dcﬁnea as

(o]

gy = f <iy(z) > dz, forv=1,2. (150)
Zh

By using equations (49) and (122) the above integrals may be rewritten as follows

qv=_fz(z)[f[ Ch"‘l(lzk;:h) (1)(k)dk:| dz
1 g b o [ '

- f f e FO W) f chkz + WZ(@)dz | dk, forv=1,2, (151)
k

in which o; = /a0 is the standard' deviation of the surface elevation ¢. The
integration over z can be performed without difficulty resulting in the following
form of the total mean flux g,

_[ 8 Kk
q”"f\/%chkh
k

k) FV (k) dk, (152)
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where the function W is defined as
Wza: 0, k) = f chk(z + h)Z(z) dz
20

1 o.2k2 kh —kh
= iexp [T] {e Q@zz/o + ko) +e™ Q(za/o — ka)}. (153)

The more general form of the function W(z,, zp; 0, k) = J; z”/ 7 chk(z +h)Z(z)dz
can be found in the paper by CieSlikiewicz and Massel (1988) and may be used if
need be to calculate the flux between elevations z, and z.

If we take polar co-ordmatcs (k,0) in the k-plane, we can introduce the
directional spectrum F(w, 8) by

F(K)dk = F(k,0)kdkdd = F(w,0)dwdd (154)
and the dispersion relation
w*(k) = gk thkh. (155)

In the one-directional case, when F (w, 8) vanishes everywhere except for 8 = 6y,
we have from (152)

o0

g= f = f;‘kh W(—h; or, k)SV(v) dw, (156)

0

where SV (w) = [ fn ﬁ'm(w, 6)dwdf denotes the linear part of the frequency

spectrum S(w) = [ F(w,8)dwdf. In the integral (156) the wave number k is
related to the angular frequency by the dispersion relation (155).

In the assumed approximation, the difference between S(w) and §"(w) can
be neglected (see Appendix A). Assuming further that

1° kyoy « 1 (where k, is the wave number corresponding to the peak fre-
quency) and that the spectrum S(w) decays quickly enough for w — oo ;

2° the water depth A is large enough (in practice it is sufficient to have 4 >
30‘;)

one can set in (156) Q(—h'tkoy) >~1 (k' =h/o;). Thus, the total mean flux
obtains the following approximate form

oogk O'gkz
0
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Note that the above expression is accurate for infinite water depth A — oo. Be-
cause it is assumed that o k has a small value for k such that the corresponding
w (through the dispersion relation (155)) gives a value of S(w) which is not in-
finitely small, we can find an even simpler form of (157). Expanding exp(-) into
Taylor series gives

0'2k2 0‘2k2
exp| 42— | =1+ 22—+ -1, (158)
2 4
thus
q 2[%S(w)dw, (159)
0

which is the result obtained by Phillips (1960).
Note that by (122), the approximate total mean flux (159) can be written as

q = p"lfl |Z=0 — Cu(xi 0! t) >, (160)

which is of a form analogous to that for the case of deterministic small-amplitude
waves g ~ tu(x,0,1) (see Phillips 1977), where the bar denotes the mean value
over a wave period.

For deep water waves (159) can be rewritten as g = f0°° wS(w)dw which is
the value of the spectral moment of the first order m;.

Narrow-band Spectrum
Assume the following spectral density as an idealised narrow spectrum:

S(w) = a8(w — wy), (161)

o is the free surface variance. In application, the spectrum has small, but finite
width, hence, (161) is an idealisation. For the spectrum (161) the approximate
value of the total mean flux (159) obtains the form:

gko -
~2—as, 162
q 0 (162)

where wo and kp satisfy the dispersion relation (155). If a is slowly changing
random wave amplitude, the following relation holds true

2

P il s (163)
2
Therefore, equation (162) may be rewritten as
2
<a“> ko
g=8=" =2 (164)

2 wy
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Thus, total mean mass flux M = pg is -

M~ = (165)

pg <a’> ky
2 wp

ol

where Cj is the wave celerity.

It can be noticed that the above expression corresponds to formula (149) for
deterministic small-amplitude waves. The correspondence is even higher than to
the lowest order since the higher order term in (158), cnr,,?k2 /4, by use of equations
(161) and (163) can be recognized in equation (149).

5. Conclusions

It is proposed that the values of a stationary and homogeneous non-linear random
process can be expressed as a series of random functions while the upper boundary
for which the process has physical values is expressed as another series of random
variables. Through this proposal the expressions for general random fields can
be applied to the process. Defining the modified water wave velocities of a wave
field as the kinematics below the surface of the waves and zero above the surface,
the theory and expressions for random fields can then be applied to water wave
kinematics.

Starting from the basic equations of hydrodynamics, the statistical properties
of wave kinematics can be expressed in terms of the linear part of the surface
elevation spectrum and there is no need to make assumptions regarding the an-
alytical expressions for the wave kinematics. It should be noted that this allows
the prediction of the statistics of wave kinematics knowing only the parameters
or the data that are required to establish the wave surface elevation spectrum.

The probability density function for modified particle velocity determined in
this study appeared to be non-zero mean and skewed in the case of horizontal
component, whilst zero mean and unskewed for vertical velocity.

An attempt is made in this paper to document that the non-zero mean veloc-
ity (in the Eulerian frame) resulting from including the emergence effect should
be treated as a mass transport velocity. This is done by showing that the for-
mulae obtained for the total mean flux in approximation lead to the known and
well-interpreted formulae for mass flux usually obtained in the Lagrangian frame.

An alternative method for derivation of the mean water flux in the region
near the mean water level is presented. The relevant formulae are developed in
the Eulerian frame for random water waves. The approximate value of the total
mean flux was previously known (Phillips 1960) but the approach presented in this
paper is in the authors’ opinion more direct in the sense that only the definition
of the total mean flux and the expression for the horizontal particle velocity is
needed. Moreover, traditional approaches allow us to treat only the total flux as
a physical quantity “existing on a subset of zero measure”, namely, exactly on
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the free surface of the wave. With such an approach we are not able, in the
Eulerian frame, to discuss the distribution of the mean velocity in the free surface
zone. We would then have the situation that the mean velocity along the vertical
is everywhere equal to zero except at the free surface. In the present approach
the mean velocity is “stretched out” from the exact location on the surface onto
the free surface zone. More precisely, for the random wave case, theoretically a
non-zero mean horizontal velocity should exist from z = —A to infinity (due to
the Gaussian distribution for free surface elevation, this zone should, however, in
practice, be treated as the region near the mean water level). Moreover, we are
able to calculate not only the total mean water flux but also the flux between two
given z-elevations.

The theoretical results of this study are verified with measurements taken in a
wave tank. This is reported in Part 2, where an attempt is also made to estimate
the return current in the wave flume in Eulerian frame by taking into account the
emergence effect.
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Appendix A

As mentioned in section 2, the random field of the free surface elevation ¢(x,t)
may be presented by equation (6). For this stationary and homogeneous random
field, on the other hand, there exists the following Stieltjes-Fourier representation

£(x, 1) = f dA(k) exp [i(k X — wt)] , - (A1)
k

in which dA(Kk) is a complex random field. The representation given by equation
(A1) enables the defining the continuous spectral density F(k) by

< dAK)dA*(K) >= F(k) 3(k — k') dkdK, (A2)

where the asterisk denotes complex conjugate.
The spectrum F(k) contains energy associated with both the first and the
higher order, forced components (see Tick 1959). Thus we can write

Fk)=FV®&) + FO®&)+---, (A3)

where FV(k) and F®(k) are the first and second order parts of the spectrum
F(k), respectively.

As was presented in section 3, for the free surface displacement ¢, the random
variables & in equation (6), for say, i =1,...,N =2N' are specified according
to Longuet-Higgins (1963) such that
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— & can be divided into two groups: i =1,... ,N andi=N+1,... ,N
— their variances V; =< §? > are

1l <a,-2> for 1=1...: N

V=2 (A%4)

2 <ai2_~,> for i=N+1,...,N,

where a;, i =1,...,N, associated with wavenumber k;, are the first order
amplitudes of ¢.

According tolLonguet-Higgins (1963), the relation between the variances V;
and the spectral density F(k) is such that when N — o0 each V; — 0 so that

FOWdk= Y, V= ) W (A3)
k; edk k;edk
ief(l,...N') ie{N'+1,....N}

over any small but fixed region in the k-plane. This means that when N — oo
(and N' — o0)

N N
fF‘”(k)dk: YW= } K (A6)
4 i=1 i=N'+1
Where series Y ;... V; appear, one can then obtain integrals by
Nr N
N A ... FOK)dk. (A7)
i=1 i=N'"+1 N—-o0 k

or Nooo

The first threé statistical moments of the random variable X will thereafter
be discussed. It can be shown that these moments can be expressed in terms of
Vi as follows:

3

N
my =Y Vit
i=1
N N
pr=Y oV +2 Y aijoiViVi+--- 3. (A8)
i=1 ij=1
N
ps =6 3 ejajoy ViV +---
ij=1

In a first order approximation one obtains

)
N
m =0, pp=7) eV, wu3=0. (A9)
i=1 ‘ :
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The next approximation is given by equations (15) which means that, in this
approximation, terms of the order V2 can be neglected when compared with
terms which are of the order V.

By the assumption of stationarity and homogeneity one can, in the case when
X is specified as the free surface elevation, consider the special point x = 0 and
time ¢ = 0. For this case Longuet-Higgins (1963) has shown that

1 fori=1,..., N,
i = ) (A10)
0 for i=N+1,...,N.
Thus, in view of (15) and (A7) in the second order
N’
pp=Yy Vi= f FO (k) dk, (A11)
i=1 k

when N — oo.

On the other hand, it is obvious that u; = fk F(k)dk which means that the
difference between the true value of the variance u; and the calculated value as
given by equation (Al1l) in view of equation (AS8) is of the order

NJ'
f FOmdk= )" ;¥ (A12)
k i,j=1

where £;; is a certain constant associated with the pair of wavenumber vec-
tors (k;, kj). In order to obtain the parameters of the probability distribution
given by equation (32) (which are primarily given in the form of series }_;... V],
2. --- Vi¥j), equation (A7) demonstrates that the linear part of the spectrum

FM (k) must be known. In the authors’ opinion, however, there is no need to split
the spectrum into its first and second order parts for practical calculations. Within
the assumed accuracy, the linear part of the spectrum can be approximated by
the full spectrum. This is consistent with Longuet-Higgins’ (1963) second order
approximation given by equation (15) but contrary to Anastasiou et al. (1982b).
In fact, under such an assumption (i.e. using F(k) instead of F(®(k)), the first
two statistical moments, which are of the order V/, are obtained with an error
of the order of V2 (while for the free surface elevation ¢ the “ideal” variance
is obtained), and third moments, being of the order V2, are calculated with an
error of the order of V4,



