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Abstract

In the paper plane Lamb’s problem for a two-phase medium is solved by the use
of the finite element method. In order to reduce considerations to a finite domain
artificial boundaries, consisting of viscous dashpots, are introduced. Discrete
results obtained are compared with those evaluated analytically.
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1. Introduction

In many dynamical structure-soil interaction problems encountered in practice we deal
with open systems of a semi-infinite type. In such problems, energy is transmitted by
progressive waves from the source of disturbances to infinity. In order to solve such
problems, because of the geometrical features of the systems, we must usually resort to
discrete methods. As the latter require the use of only a limited number of discrete po-
ints, it is necessary to reduce considerations to a finite area of the soil in the vicinity of
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the vibrating structure and to introduce imaginary boundaries enclosing the field of in-
terest. At the boundaries appropriate conditions should be formulated so as to ensure
an undisturbed flow of energy from the finite region to infinity. These conditions can
be constructed in some ways. One of the possible approaches consists in the setting up
of a system of viscous dashpots at the boundary to absorb energy of incoming waves.
Such a method was proposed and successfully applied in solving a plane, steady-state
wave propagation problem for a purely elastic half-space by Lysmer and Kuhlemeyer
(1969). Satisfactory results were also obtained by Filipkowski and Sienkiewicz (1988),
who applied this method for a case of viscoelastic solid. As regards a two-phase, fluid-
saturated poroelastic medium, such absorbing conditions were proposed in the earlier
paper of the author (Staroszczyk 1992a). At the viscous boundary three groups of
infinitesimal dashpots oriented normally and tangentially to it are established. Their
aim is to absorb three types of body waves (two dilatational and one shear) which
propagate in the two-phase material. Parameters of the dashpots are so chosen as to
ensure maximum absorbing ability of the viscous boundary. As the results of nume-
rical analysis showed, the proposed boundary is able to absorb about 89 — 95 percent
of the incoming wave energy, depending on the frequency of oscillations and the kind
of soil (sandstone, coarse and fine sands were considered). In the paper mentioned the
parameters of the viscous dashpots set up at a vertical boundary perfectly absorbing
Rayleigh-type surface waves are also evaluated.

The purpose of the present paper is to examine the usability of the proposed
approximate transmission boundary conditions for the two-phase media in solving
steady-state plane problems, typical for engineering practice. To this aim, Lamb’s
problem which consists in the determination of displacement fields of the medium
due to tractions applied at the free surface of the half-space, is investigated. The
considerations are confined to oscillations which are small, linear and harmonic in
time. The motion of the fluid-saturated poroelastic medium is studied on the basis
of the dynamic theory of consolidation, formulated by Biot (1956). A solution to the
problem is constructed by means of the finite element method. Employing the discrete
model constructed, some numerical calculations have been made and their results are
compared with those obtained analytically (Staroszczyk 1992b).

2. Formulation of the Problem

The problem under consideration is shown in Figure 1. A fluid-saturated poroelastic
medium, which occupies the half-space z > 0, is subjected to the time harmonic trac-
tions q,.(z) exp(iwt), ¢,(x) exp(iwt) and g,(z) exp(iwt) applied at the free boundary
z = 0, with w being the angular frequency of vibrations. The aim of the investigation
is to determine displacement fields of the skeleton and the pore fluid due to exciting
surface loads.

The equations governing the motion of the porous medium filled with a viscous
fluid are taken as those formulated by Biot (1956). In the plane Oz z coordinate system
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Fig. 1. Finite dynamical model of the Lamb’s plane problem

they have the form:

2
V?(Pdiva+QdivU) = %(pudivu+p12divU)+(%div(u—U), (1)

2

Vi (Qdivu+ RdivU) = %(pm divu + pa2 divU) — C% div(u - U),
2

GV?rotu = g—tg(!’u rotu + piarot U) + Ca— rot (u — U),
2

0 = %(pm rotu + paarot U) — C—— rot (u — U).

In the latter set of equations u” = {u,0,w} and UT = {U,0, W} are the displacement
vectors of the skeleton and the pore fluid, respectively; G, A, @ and R - elastic moduli
of the medium, (P = 2G + A); p11, p12, p22 — the mass coefficients; { — the damping
parameter; ¢t denotes time and V2 — the Laplace operator.

The stress-strain relations for Biot’s medium are defined by the equations:

ogij = 2Ge.-,v +5,'J'(A divu+ Qdiv U), (2)

s Qdiva+ RdivU,

with the components of the skeleton strain tensor e;; given by

eij = %("-'.:' + uj5). (3)
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In equations (2) o;; denotes the stress tensor in the skeleton, s the stress (tension) in
the pore fluid, 6;; the Kronecker symbol, i and j assume the values 1, 2, 3.

The equations of motion (1) should be supplemented by the boundary conditions.
At the free surface z = 0 they take the form:

0::(2,0,t) = —gs::(2) exp(iwt),
oz:(2,0,1) = —gqr.(z)exp(ivt), (4)
s(z,0,1) = —g.(z)exp(iwt).

In the above relations ¢.(z), gz:(z) and g,(z) are the amplitudes of the exciting

| tractions applied at the surface z = 0.
| At the artificial boundaries enclosing the finite rectangular region ABCD (see
Fig. 1) approximate absorbing conditions are supposed to be satisfied. Since the major
part of the energy radiating from the source of disturbances is transmitted by a surface
wave (Ewing et al. 1957) it seems reasonable to assume on the vertical planes z = +L
the conditions constructed specially for absorbing Rayleigh-type waves. In turn, at the
horizontal boundary z = h it is difficult to estimate the wave pattern approximately —
| it is possible only at relatively large distances from the source of disturbances. For this
; reason, we assume at the plane z = h so-called standard viscous boundary conditions,
i.e. those which ensure approximate absorption of the plane body waves. According
I to the above statement, we write:
I

— at the vertical boundaries z = £L

Oz = —/\fg—?,
- _,\;‘%g, (5)
Cos = —A‘;%—T;

— at the horizontal boundary z = h
Oz = —/\1%?.
s = N, (6)
Gy, = —Aa%.

Quantities AR, AR and AR are the parameters of the viscous dashpots which can
perfectly absorb Rayleigh-type surface waves, and Ay, Az and A3 denote the dashpot
parameters absorbing plane body waves arriving at the plane viscous boundary. It
follows from the constitutive relations (2) that, in a general case, stresses in either
component of the fluid-filled medium are coupled to each other through displacement

" |
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fields of both the skeleton and the pore water. In a particular case of variations
harmonic in time, this coupling can be expressed by means of three factors, being
complex numbers, which relate displacement vectors u and U to each other. These
complex coefficients may by easily determined from the set of equations (1) by writing
it for time-harmonic oscillations and then equating its main determinant to zero
(Staroszczyk 1992a, 1992b). Accordingly, owing to the coupling of the two phases of
the medium, it is sufficient to write at the right-hand sides of the first and the second
equations of (5) and (6) velocities of only one component of the medium - either the
skeleton or the pore fluid.

The proper evaluation of the viscous dashpot parameters is of key significance for
the accuracy of the method discussed. In the case of surface waves the parameters
AR, A and Af can be determined exactly, because the stresses and velocities of the
porous medium at the vertical boundary can be described explicitly as a function
of depth from the free surface of the half-space. On the contrary, parameters Ay, A2
and A3 can be evaluated only approximately. For example, by solving a problem of
reflection of plane body waves at the plane viscous boundary. For an arbitrary angle
of incidence and dashpot parameters A; a ratio between the energy transmitted by
the reflected waves and that transmitted by the incident waves is evaluated. Then,
such values of A1, A2 and A3 are sought, for which the energy ratio averaged over the
whole range of possible angles of incidence (i.e. within the range [0, 7/2]) reaches its
minimum. The details of such an analysis can be found in the above-quoted paper
(Staroszczyk 1992a). For purposes of the present investigation we only mention that
the best absorbing ability of the viscous boundary occurs for values ); very close to
those ensuring perfect absorption of waves arriving normally to the boundary. This
means that to determine parameters Ay, Ay and A3 it is sufficient to solve the one-
dimensional wave propagation problem and the dashpot parameters obtained in such
a way have been used in numerical calculations, the results of which are presented in
section 4 of the present paper.

3. Discrete Solution of the Problem

The boundary-value problem, defined by equation (1) and (4) to (6), is solved in an
approximate way by the use of the displacement-based finite element method. The
rectangular, continuous domain ABCD (see Fig. 1) is replaced by an assemblage of
rectangular finite elements. A typical, four-node element is shown in Fig. 2.

In the plain strain conditions there are, in general, four non-zero components of the
displacement vectors u and U. Let us denote by f the vector listing these components:

T = {u,w,U,W}. (7)

Since there are 4 degrees of freedom per node, the element nodal displacement vector
&° contains 16 components:

8¢ = {6:,6;,6:,6,,}7 (8)




72 ' R. STAROSZCZYK

™ 1 |
It 5
0
] X
€
o
z u U
1L n L
Wi
Wik

Fig. 2. Rectangular finite element and local coordinate systems

with 63" = {u,, wy, Us, W, } (r = i, j, k, 1) being the displacement vector corresponding
to node r. We assume the linear variation of the displacements u, w, U and W within
the finite element, i.e. the following shape functions are considered (Zienkiewicz 1977):

Nr = é(l +Er£)(l * ’7"")? = i'j'k'l’ (9)

where, for convenience, we have introduced dimensionless coordinates defined by
§=z/a, n=1z/b, (10)

and (&, 7,) = (£1,£1) are the coordinates of the finite element nodes in the local
coordinate system 0€7. Using the shape functions (9) we relate the displacements f
within the element to the nodal displacements §° by means of the formula:

f =Né6°, (11)
where the interpolation functions matrix N has the form
N = [NI, NI, Ni I, NiT] (12)

and I is the identity matrix (4 x 4). The non-zero strains (3) related to the displace-
ment vector f are:

ET = {Crsaezzg'ﬁ'zuf}s (13)

where ¥z, = 2ez;, and € = div U is the dilatation of the pore fluid. Employing rela-
tions (3) and (11) we express strains (13) in terms of the element nodal displacements
§° as follows:

e = B§°, (14)
where the strain-displacement transformation matrix B is defined by

B = [B;, B;, B, B/] (15)

2 |
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and consists of four square submatrices of the form:

¥, 0 0 0
1|0 & 0 0
SZap | b5 8T 0 0

0 0 & b

) 1‘=1.,j,k,’, (16)

with ] = &.(b+ nrz) and b} = n,(a + &-x). We list the stresses corresponding to the
strains e in the vector o:

ol = {022,0::,022,8}. (17)

The constitutive relations (2) may now by written in the form:
o = De, (18)

where D is the elasticity matrix of Biot’s medium in the plane strain conditions and
has the form:

P A0 Q
laPo @
D=1o-0 ¢ 0| (19)

By applying the principle of virtual work we derive the following system of equilibrium
equations for the finite element:

ke8¢ + c‘a—6° + m‘iﬁ =F* (20)
at ot ;

where F* denotes the vector of nodal forces corresponding to the element degrees of
freedom. The element stiffness matrix k® is defined by the formula:

a b
k':/fBTDdedz, (21)
Shap it ¥
and consists of sixteen (4 x 4) submatrices:
kii kij kie ka
e | ki ki ke K
= : 22
" kei kij ki ku (22)
ku klj ktk kl’l

Each of the submatrices k¢, has the form:
PIf{ +GI33 Al + Gy QI QI3
ke = | ABi+ Gl PI + Gl QI QL (23)
i QI QI3 RI} R |’
QL QI3 RI3} RI;
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where:
H — ErEa (1 Y flr"h) , ;—; s Erfh’
4 3 4
nrés Nr1)s @ s (24)
IE; — 4 ] I;; = 4 b (l + El‘{d) ] f',s = !1Jrks I‘

The element damping matrix c® is given by the relation:

a b
- f f NTENdzdz, (25)
—-a=b
with
1 0 -1 0
0 1 0 -1
Bel.a o 1 ®) (24}
0 -1 0 1

Like the stiffness matrix k¢, the matrix c® is also composed of sixteen (4 x 4) subma-
trices, determined by the formula:

cr, =CI°E, ros=1,j,k,1, (27)
with
ab 1
o = (1 + frE,) (1 + 517,.1],) A (28)
Finally, the element mass matrix m® is defined by means of:
a b
m® = //NTde;r:dz, (29)
—a =b

where the matrix p appears:

pi1 0 p1z 0

0 P11 0 P12 . (30)

P=1 pz 0 pa 0

0 p12 0 P22
Also, the matrix m¢ consists of (4 x 4) submatrices of the form:

m:a =I’p, rs=1i,j,klL (31)
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Performing for the whole structure considered the direct addition of the element
stiffness, damping and mass matrices, and keeping in mind that time harmonic varia-
tions are analysed, we arrive at the final set of equations corresponding to the problem
under discussion:

K6 =F, (32)
with the complex stiffness matrix K of the form:
K = K + iwC — w?M. (33)

In equations § and F are the structure displacement and nodal point load vectors;
K, C and M are the structure stiffness, damping and mass matrices, respectively.

Before solving the set of equations (32), the stiffness matrix K has to be modified
so as to satisfy the boundary conditions of the problem. Imposition of ahsorbing con-
ditions (5) and (6) results in the adding of the appropriate stiffness parameters to the
relevant diagonal elements of K. The stifiness parameters mentioned are evaluated by
integrating the functions describing the distribution of the viscous dashpots over the
sides of finite elements adjacent to the imaginary boundaries. In the case of the nodal
point displacement conditions being specified (for instance at the plane of symmetry
of the problem) the so-called penalty method has been employed (Bathe 1982). This
method has the advantage of only the diagonal elements of the structure stiffness
matrix being modified, which leads to a numerically stable solution of the resultant
set of equations (32).

4. Numerical Examples

On the basis of the discrete method presented, a numerical model of the problem
discussed has been constructed. In order to decrease a number of nodal points of the
discrete system we have confined consideration to a problem symmetric with respect
to z-axis — the model corresponding to the latter is shown in Fig. 3. It consists of a
non-uniform mesh of rectangular finite elements. The mesh spacings change in both
horizontal and vertical directions — they increase gradually with growing distance
from the zone of excitation. The model has had 20 nodes along z-axis and 15 nodes
along z-axis (266 finite elements, 1200 system degrees of freedom). In order to ensure
acceptable accuracy of the discrete model the maximum mesh sizes should not exceed
certain values, defined by the lengths of waves propagating in the porous medium.
The numerical tests have shown that for obtaining satisfactory results it is sufficient to
maintain the maximum finite element sides in limits of about 1/10 to 1/8 of the wave-
length of the Rayleigh surface wave L. An another factor that strongly influences the
accuracy of the numerical results is the distance from the source of disturbances to
the artificial boundaries, as the latter absorb arriving wave energy imperfectly. It has
been found that this distance should not be less than about 3/4 of the surface wave
length. In the model used in computations, the above-mentioned distance, defined by
the sides of the rectangle ABEQ in Fig. 3, has been assumed to be equal to the one
length of the surface wave, i.e. h = L = Lg.
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Fig. 3. Discrete model of the problem

The numerical calculations have been carried out for material parameters pertain-
ing to a coarse sand filled with water:

G=375%x108Pa, A =2.82x10°Pa,
Q=138x10°Pa, R=92x10°Pa,

pi1 = 1590kg/m®, pya = 400kg/m®,

p12 =0, ¢ = 1.57 x 10° Ns/m".

These data correspond to the coarse sand of a real mass density of the skeleton
ps = 2650 kg/m3, a porosity n = 0.4 and a filtration coefficient k;y = 0.01 m/s. As
an example, we present the numerical results obtained for a particular case with the
surface load in the form of a step function of constant pressure gg, applied to the
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porous skeleton over a segment —! < z <[ normally to the free surface z = 0. The
boundary conditions (4) have now the form:

—qoexp(iwt), |z| <1,
c,.(z,0,1) =
«(e.0,0) 0, lz| > 1, (34)
0z:(2,0,t) = s(z,0,t) =0, |z] < o0.

For a given exciting load we calculate the components of the skeleton and the pore
water displacement vectors u,w,U and W. For convenience we express them in the
dimensionless form:

u = |u|expli(wt+ 64)] = %Drl,

T = [mlexplifut +6,)) = 22,

(35)

where | and |w| are the complex moduli (amplitudes) of the dimensionless horizontal
T and vertical W skeleton displacements, while é, and é,, are the complex arguments
(phase angles) of these displacements. Expressions similar to the latter can be written
for the pore water displacement wector components U/ and W. The parameter &,
appearing in (35), denotes the wave number of the distorsional wave propagating in
the unbounded two-phase medium.

In Figure 4 we plot the amplitudes of the dimensionless vertical displacements
(35) of the skeleton and the pore water in the vicinity of the zone of excitation for
the case of angular frequency w = 4.341 s~! and [ = 10 m (which correspond to the
dimensionless frequency k.l = 0.1). The results computed by means of the discrete
method are compared with those obtained analytically (Staroszczyk 1992b). It is seen
that a good agreement between the results of the two methods has been reached. The
largest relative differences occur near the region of external load application and for
frequency considered they are equal to about 7 per cent for the skeleton and about 9
per cent for the pore water (for z = 0,z = I). At points more distant from the source

of disturbances the relative discrepancies are smaller, e.g. for |z| or z S 51 they do
not exceed 4 per cent for both phases of the porous solid.

In engineering practice we are most often interested only in displacements of the
free surface of the half-space. Some of the numerical results concerning the free surface
vertical displacement amplitudes at different dimensionless frequencies k[ are listed in
Table 1. One may observe that at higher frequencies an average accuracy of the results
slightly improves. At the frequency k.l = 0.1 the maximum discrepancies between the
discrete and the analytical results equal 5.8 per cent for the skeleton and 8.1 per cent
for the pore fluid, while at k.! = 1.0 these values are equal to 5.7 per cent for both
the components of the medium. At greater distances (|z| = 5{) the results differ by
not more than 3.7 per cent for both the skeleton and the pore water.

In order to investigate the influence of the frequency of oscillations on the accuracy
of the method, some calculations have been performed for a wide range of dimension-
less frequency parameter 0.1 < k! < 1.5. The discrete results obtained against the
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SOLUTION OF LAMB’S STEADY-STATE PLANE PROBLEM ... 79

Table 1
Dimensionless vertical displacement amplitudes at the free surface — comparison of
analytical and FEM results (coarse sand, { = 10 m)

kd | 21 Skeleton Pore water

H Anal. | FEM [ Anal. | FEM
0.1 0.0 [ 0.2090 | 0.1968 | 0.1231 | 0.1131
1.0 | 0.1683 | 0.1588 | 0.1081 | 0.1017
2.0 | 0.1181 | 0.1124 | 0.0891 | 0.0898
3.0 | 0.0986 | 0.0948 | 0.0812 | 0.0822
4.0 | 0.0869 | 0.0842 | 0.0758 | 0.0736
5.0 | 0.0791 | 0.0767 | 0.0719 | 0.0704
0.5 0.0 [ 0.6265 | 0.6130 | 0.3659 | 0.3801
1.0 | 0.4424 | 0.4253 | 0.3005 | 0.2922
2.0 | 0.3094 | 0.2967 | 0.2640 | 0.2543
3.0 | 0.2819 | 0.2653 | 0.2606 | 0.2510
4.0 | 0.2730 | 0.2626 | 0.2609 | 0.2501
5.0 | 0.2680 | 0.2609 | 0.2592 | 0.2495
1.0 [ 0.0 [ 0.9076 | 0.8983 | 0.5597 | 0.5915
1.0 | 0.5250 | 0.5212 | 0.4242 | 0.4215
2.0 | 0.4628 | 0.4309 | 0.4391 | 0.4183
3.0 | 0.4527 | 0.4271 | 0.4340 | 0.4144
4.0 | 0.4143 | 0.4030 | 0.3907 | 0.3906
5.0 | 0.3467 | 0.3440 | 0.3133 | 0.3131

analytical ones are plotted in Fig. 5. Since, as a rule, the largest discrepancies be-
tween the results of both the methods occur in the neighbourhood of the excitation
zone, we have confined our attention to the vertical displacements at the origin of
the coordinate system. The plots exhibit the small differences between the discrete
and the analytical results within the whole frequency range. The mean square relative
deviations between the results of the two methods are for both the components of the
medium almost equal to each other: 3.4 per cent for the skeleton and 3.6 per cent for
the pore fluid. Slightly larger discrepancies are observed at low frequencies (k! < 0.2),
while at higher ones (k,! > 0.5) the accuracy of the discrete method increases.

5. Final Remarks

In the paper we have investigated the applicability of the earlier formulated (Starosz-
czyk 1992a) approximate absorbing boundary conditions for Biot’s media in solving
harmonic in time, semi-infinite problems. To this aim, Lamb’s problem has been

solved by the use of the finite element method. On the basis of the discrete model
constructed, some numerical computations for a water-filled coarse sand have been
performed. The numerical results obtained reveal a good agreement with those eva-
luated analytically within a wide range of frequencies. The displacement amplitudes
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Fig. 5. Dimensionless vertical displacement amplitudes at the origin of the
coordinate system at different frequencies — comparison of analytical
and FEM results (coarse sand, [ = 10 m)

calculated by means of the two methods differ at most by 7 per cent for the porous
skeleton and 9 per cent for the pore water directly near the excited zone, and not
more than about 4 per cent for both the components of the medium at points distant
from the source of disturbances. It has been found that in order to ensure satisfactory
accuracy of the discrete results the maximum finite element dimensions ought not
to exceed 1/10 to 1/8 of the wavelength of the surface wave. The number of discrete
points over the wavelength should be greater as the frequency of oscillations decreases.
The artificial absorbing boundaries should be situated at distances of about one or
more wavelength of the Rayleigh wave from the excitation zone. One should note that,
due to the approximate character of the absorbing boundary conditions applied, it
is difficult to achieve a better accuracy of the method by increasing the number of
nodes of the discrete system. But even so, the results obtained allow us to expect that
the discrete approach presented in this investigation will be useful in the analysis of
more complex problems, which cannot be solved otherwise than by the use of discrete
methods.
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Summary

The paper deals with Lamb’s time harmonic plane problem for a fluid-filled poroelastic
medium. The analysis is carried out within the framework of Biot’s dynamical theory
of consolidation. The problem is solved in a discrete way by the use of the finite element
method. In order to reduce considerations to a finite domain artificial boundaries are
introduced. At these boundaries a system of infinitesimal viscous dashpots, the aim of
which is to absorb incoming wave energy, is set up. Employing the discrete model of
the problem some numerical calculations for a water-saturated coarse sand have been
carried out. Comparison of the numerical results obtained against those evaluated
analytically shows satisfactory accuracy of the discrete approach presented.

Rozwigzanie ustalonego plaskiego zagadnienia Lamba dla
oérodka Biota metoda elementéw skornczonych

Streszczenie

W pracy rozwaza si¢ harmonicznie zmienne w czasie plaskie zagadnienia Lamba
dla sprezystego orodka porowatego wypelnionego ciecza. Dyskusje przeprowadzono
w oparciu o dynamiczng teori¢ konsolidacji Biota. Zadanie rozwiazano w sposéb dys-
kretny, stosujac metode elementéw skoriczonych. W celu ograniczenia rozwazan do
obszaru o skoniczonych wymiarach wprowadzono sztuczne brzegi. Na brzegach tych
umieszczono system zastepczych tlumikéw lepkich, ktérych zadaniem jest pochla-
nianie energii fal padajacych na brzeg. Wykorzystujac model dyskretny zagadnie-
nia wykonano obliczenia numeryczne dla nawodnionego piasku grubego. Poréwnanie
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otrzymanych wynikéw numerycznych z rezultatami uzyskanymi w sposéb analityczny
wskazuje na zadowalajaca dokladnoéé zaprezentowanego podejécia dyskretnego.



