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Optimal Ground Water Pumping Model

Abstract

The paper presents possibilities of application of linear programming to optimize
water pumping from an aquifer using vertical wells. An optimization model
is described, in which so-called “response coefficients” characterizing lowering
of the ground water table in some points of the aquifer, resulting from unit
water discharge from individual wells, are used. The methods of calculating
response coefficients are given for both confined and unconfined ground water
flow. The objective function and constraints for the problem of minimization
of total discharge from a group of wells dewatering an excavation have been
formulated. The results of application of the optimization model to the problem
of dry dock dewatering are presented. To verify the optimal solution resulting
from the model, a forecast of ground water level changes has been calculated.
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1. Introduction

An important development in the field of application of numerical simulation models
to hydrology has been achieved in recent years. Simulation models are used with
increasing frequency to study possibilities to attain a desired water management goal.
Direct application of simulation models to such cases requires repeated simulation
under different manners of operation of existing or designed objects impacting the
conditions of ground water flow. A natural consequence of ground water systems
modelling development is the tendency to use standard optimization methods such as
linear and nonlinear programming. For the problem of ground water flow an objective
function and constraints must be formulated; the constraints can be created using
mathematical models, analytical solutions etc. Thus we deal with a substantially new
situation — a model of optimal management of ground water flow. Two basic methods
of development of such models, using linear programming, may be distinguished.

The first one, called “embedding method” (Jones et al. 1987), consist in incor-
poration of the system of hydraulic equations describing the ground water flow into
the optimization model. Linear algebraic equations resulting from the application of
the method of finite difference or finite element are in most cases incorporated as
constraints into the optimization model. The quantities of discharge or recharge at
grid nodes of the hydrological model usually become decision variables. Such a model
is composed of an objective function and a set of hundreds or even thousands of con-
straints according to the number of space nodes and time steps in the time interval
considered.

The second method of modelling, called “response matrix method”, consists in de-
termination of so-called response coefficients characterizing changes of water level in
some points of the aquifer, resulting from water pumping from or recharging in indi-
vidual wells with a unit pumping rate. The response coefficients can be defined using
analytical solutions (if existing) or obtained from numerical simulation or determined
by in situ experiments (Cicioni et al. 1982). The coefficients are only calculated once
and used to determine the objective function and basic constraints. The quantities of
water pumping or recharge for each well are decision variables in the model of optimal
management of ground water flow. Special points, called also critical points, are arbi-
trarily chosen. One should be aware that the optimal solution of the problem depends
on the number and localisation of the critical points. The number of constraints de-
pends on the number of critical points, but when comparing with the first method the
number is usually considerably smaller. Instead of “response matrix” the notions of
“sensitivity matrix” (Jones et al. 1987, Schwartz 1977) and “algebraic technological
function” (Maddock 1972) are used.

In this paper some exemplary problems of linear programming for ground water
flow are formulated. Next, are presented methods of response coefficients calculation
using analytical solutions for steady and unsteady, confined and unconfined ground
water flow. The results of calculation using the response matrix method for the case
of excavation dewatering optimization are further presented.
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The paper has been worked out in the framework of CPBP-03.09 Project entitled
“Methods of analysis and utilization of water resources” and during the stay of one
of the authors in the Water Research Institute in Rome (Italy).

2. Linear Programming in Problems of Ground Water Flow

Let us consider the situations presented in Figures 1 and 2. There is a group of
NW wells and N P critical points. The optimization problem consists in finding the
discharge (or recharge) for each well provided the constraints concerning a drawdown
(or ground water level) are satisfied in all critical points and the total discharge (or
recharge) of all wells attains minimum (or maximum) value. The linear programming
problem for this case is as follows:

NW
F = ZQ,- = max or min; (1)
i=1

with constraints:

5k < 5k max; & =1, 2oy NE (2
or/and

8k 2 Skmin, k=1,2,.0,NP (3
and

QjminSQjSQjmam i=1,2,...,.NW (4
where:

F — objective function (total discharge of all wells),

Q; - discharge (or recharge) value for well number j,

Sk — drawdown in critical point number k,

Skmax;Skmin — maximum and minimum admissible value of drawdown in

point number k,

Qj max, @jmin — maximum and minimum admissible value of discharge for
well number j.

The objective function (1) should be maximized, if a problem of intensive explo
tation of a water intake and protection of some area (e.g. valuable from the environ-
mental point of view) against dewatering is put forward. If a problem of some area
(e.g. civil engineering excavation) dewatering is considered, the objective function
should be minimized. The constraints (2) in the first and (3) in the latter case must
be taken into consideration. The constraints (4) express in both cases that discharges
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are included in given limits. The set of equations and constraints (1), (2), (3), and
(4) represents the general formulation of linear programming for problems of optimal
management of ground water flow, nevertheless another types of constraints and dif-
ferent formulation of the objective function are possible according to the needs of a
considered problem.

Another problem that can be resolved using tlie linear programming, is controlling
and limiting the ground water outflow from some chosen area (Figure 3). Let us
consider the problem of maximizing of water discharge from an aquifer (or recharging
an aquifer with water), when the hydraulic gradient in the aquifer area, represented
by a set of pairs of points, should be limited. The problem can be formulated as
follows:

NW
F = Z Q; = max; (5)
i=1
Y [m]
11 10 9 8 7 6
x x x x *
10000 ® S x e )
8000 _| xx 5
6000 _| %xx 4
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T 1 T |
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Fig. 3. Ground water management problem accounting for hydraulic gradient
restriction
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with constraints:

jk S Jk max) (6)
where:

Ji — gradient between k'* pair of points,

Ji = (he1 — he2)/ L, (7)

L — distance between points k; and ka2,

hi1,hga — hydraulic head in points ky and k»,

Tk max — maximum admissible gradient between points k; and k.

At the end of this brief review of linear programming application to problems of
ground water flow we present an example of minimization of operating cost of a group
of wells (Deninger 1970, Jones et al. 1987, Maddock 1972). An additional constraint
regarding the total water discharge (Bear 1979) from the intake during the operational
period has been introduced. The situation is presented in Fig. 2, while the diagram
in Fig. 4 illustrates requirements concerning total water discharge in consecutive time
intervals. The objective function is then:

A
a

QI-|

Quy

v

At At

Fig. 4. Diagram of water demand from intake

At
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NW
F= Ec_,-QJ- = min; (8)

J=1

where: ¢; is unit cost of water acquisition from well number j, with constraints:

B < Bhicse k=12,....NP (9)
Qj min S Q‘; S QJ max (10)
NW .
3 al=0; § 2,2 NT (11)
i=1
where:
Q; - pumping from j** well at i** time step,
tin — minimal required pumping at i*h time step,
Si - drawdown in k'® critical point at i** time step,
Qj - demand for water at i** time step,
NT - number of time steps.

The unit costs can also include a water transport cost from the well to a destina-
tion.

3. Determining of Response Coefficients

The model of optimal management of ground water flow, based on the notion of
response coefficients, requires that the superposition principle is valid with regard
to a drawdown resulted from simultaneous impact of all wells considered. Thus, the
drawdown at a given point k can be calculated in the following way for a confined
aquifer (Bear 1979):

NW NW

Sk = Z Ski = Z Qjari (12)
i=1 i=1

where:

Sy — drawdown in k*P critical point,

Sii — drawdown in k' critical point resulting from discharge from j** well,

@; - pumping from j** well,

ap; — response coefficient of j*» well impacting k*® critical point.

L e s
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For a steady state flow in homogeneous and isotropic porous medium the response
coefficients are calculated as follows (Bear 1979):

arj = In(R/rej)/(27T) for rij <R (13)
where:

rij — distance between j** well and k** critical point,

R - radius of influence for all wells,

T - transmissivity (T = Km),

K - aquifer hydraulic conductivity,

m - aquifer thickness.

For a transient flow in homogeneous, isotropic, confined, and infinite in the plane
aquifer, when the wells begin operation at the same time, the drawdown in k'* point
is defined as (Bear 1979):

. ¢ ¥ y
Si = Si(t) = =5 3 QW (i) (14)
j=1

The function W (u) appearing in formula (14) is called well function and is:

[ o]
2
e " i TEj S
r=u
where:
S - coefficient of storage of the aquifer,
t; — i? time step.

The response coefficients are then defined for a transient flow as:
a}; = W(ui;)/(4xT) (16)

The response coefficients can easily be determined using the image-well system
(Bear 1979), if there exist rectilinear boundaries of considered ground water flow
area. Two types of boundaries may be considered: recharge boundary (e.g. river or
lake bank) or barrier boundary (tight wall, a clay layer petering out). The image-well
system can easily be applied, if the boundaries cross at the right angle. In such case
an analytic solution for a group of wells can be used for both steady and transient
flow. :

The above formulae determining the response matrix refer to a confined flow.
A solution for a group of wells co-operating in an unconfined flow is given e.g. by
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Bear (1979). If Dupuit’s approximation is used for a steady state flow, the solution is

as follows:
-k} = E Q; In(R/rk;)/(xK) (17)
while for transient flow:
WN )
HE - hi(t:) = ) _ Q;W(ui;)/(2k) (18)
j=1
where:
Hg = const — original water table over an impervious bottom,
hy — water table in k*# critical point.

In order to solve the linear programming problem a new variable, namely v =
H? — h2 should be introduced as a new constraint. Introducing it into the expression

(18) one obtains:

NwW NW
ve =Y QiIn(R/ri;)/(nK) =) Qjau; (19)
i=1 j=1
where
ak; = In(R/re;)/(n ) (20)
and for transient flow:
. NW . NW .
vi =Y QiW(uj,)/(2rK) = ) Q;aj; (21)
j=1 §=1
where
ai; = W(uy;)/(27K). (22)
The relation between a real drawdown s; and the new variable v is as follows:
Skz.Hn—hk:Vk/(Hg-l-hk) (23)
or
vi = 8;(2Ho — si). (24)
Solving the equations (24) with regard to s; one obtains expressions for s:
sk = Ho— (Hi —w)'/? (25)

Thus, when considering the linear programming problem for unconfined ground water
flow, a constraint with regard to the new variable » must be formulated.

T
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4. Numerical Example

To present the practical possibility of application of optimization methods an example
concerning dewatering of an excavation with vertical wells has been calculated. The
data for the calculation is taken from the paper by Aquado et al. (1974). The authors
of that publication used the first method (embedding method), described above in
the introduction, to design a dewatering system for a dry dock excavation 1000 m
long and 90 m wide. The aquifer parameters were the following: aquifer thickness
36 m, hydraulic conductivity 10.18 m/day, and coefficient of storage S = 0.2. Taking
into account the symmetry of the area considered, only one quarter of it has been
taken for further considerations. The situation is presented in Fig. 5. The boundary
conditions are assumed at a small distance from the excavation bank (about 100 m).
The boundary coordinates are X =0 m and ¥ = 0 m for recharge boundary and
X =600 m and Y = 150 m for barrier boundary (axis of symmetry). Aquado et al.
(1974) found the optimal solution for steady state flow. The wells were localized in
nodes of a rectangular grid of 40 m by 10 m. They were situated as close to the
excavation border as possible from the point of view of the assumed grid. The layout
of the wells is shown in Fig. 5, the wells coordinates are specified in Table 1. In order
to establish the time necessary to lower the water table inside the dewatered area to
a desired level a simulation model for transient flow using the finite difference method
was used.

Table 1
Optimal solution for excavation dewatering problem (variants 1 and 2)

Well [ Coordinates Well discharge

number | X ¥ Variant 1 | Variant 2
m] | [m]

1 80 90 0.0 4,758.5
2 120 90 12,606.9 3,838.6
3 200 90 0.0 3,286.8
4 240 90 3,483.5 2,893.4
5 280 90 350.4 2,952.1
6 320 90 3,554.7 3,086.0
7 360 90 367.5 0.0
8 400 90 3,559.2 2,996.7
9 440 90 368.7 | 807.4
10 480 90 3,559.6 3,092.9
11 520 90 369.3 [, 829.6
12 560 90 3,559.6 3,098.0
13 600 90 184.6 415.4
14 40 | 150 0.0 3,086.3
Total 31,964.0 | 35,141.7
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The authors of this paper have applied a method different from that by Aquado
et al. (1974) to solve the same problem, namely the “response matrix” method. This
approach is supported by the fact that it becomes possible to employ an analyti-
cal solution for determining the drawdown at any point of the considered area, and
i by possibility of taking into account the duration of excavation dewatering. The re-
sponse coefficients have been calculated using formula (22) in conjunction with the
image-well system described by Bear (1979). The relation (24) has been used to for-
mulate the constraints. Special procedures calculating the response coefficient for the
case of rectilinear boundaries and two programmes generating initial data acceptable
by one of the linear programming packs (LP87) for IBM PC have been developed.
The first programme enables the creating of data for the case when the well radius
is unknown. The second one includes additional restrictions resulting from the well
radius and imposed on the drawdown value in all wells. The drawdown in a well has
been calculated using response coefficients between the point of location of this well
and points of location of all other wells. The self-response coefficient for a well has
been defined as the coefficient between the centre of the well and a point located at
a distance equal to the well radius.

Using the programmes mentioned, the data for optimizing calculations has been
prepared for two variants of the problem described by Aquado et al. (1974). The
critical points representing the dewatered area have been localized inside the same
area in nodes of the grid as assumed by Aquado et al. (1974), hence in the mesh 40 x
10 m. The total number of critical points is 78, their layout being presented in general
outline on Fig. 5.

First the optimization calculations have been performed without limiting draw-
down and discharge from dewatering wells and assuming a dewatering time equal to
30 days. The results are presented in Table 1. The total discharge (value of the objec-
tive function) is 31,964 m3/day. For 3 wells (1, 3, 14) the total discharge is nil, while
in one of them (2) the solution gives very high discharge, namely 12,606.9 m?3/day.
This optimal solution appears to be hardly useful from the practical point of view,
because an attempt to pump the water using calculated discharges may lead in some
wells to such lowering of the water table that it attains the aquifer base. It depends
on dimensions of dewatering wells (radius, screen length etc.). Aquado et al. (1974)
were using the “embedding method” and in consequence their set of constraints in-
cluded differential equations formulated for individual nodes of the aquifer area grid.
The optimized discharge in a grid node corresponded to the whole region of node
influence — in this case to 10 x 40 m. They did not deal with any parameters of
dewatering wells thus no constraints were imposed on physical reality of drawdown in
the dewatering wells. They should rather tell about water discharge from the region
of node influence than from the well placed in the node. The variety of the response
matrix method, presented above, enables easy incorporation of additional constraints
imposed on drawdown in dewatering wells and simultaneous respect of duration of
the excavation dewatering.

In the second variant of calculations it has been assumed that drawdown in any
dewatering well cannot exceed 36 m and additional constraints have been incorporated
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assuming that any dewatering well is a fully penetrating well with radius of 0.5 m.
The optimal solution calculated for this formulation is presented in Table 1. This
time the total discharge is 35,141.7 m3/day. There appears only one well (7) with
null discharge, and the discharge of remaining wells is much more homogenous than
before (from 415 to 4,758 m3/day). It is worth noting that for wells with radius of 0.1
or 0.2 m no solution satisfying the assumed constraints can be achieved.

150

100

Fig. 6. Forecast of ground water table distribution after 30 days of pumping
(variant 2)

Some verifying calculations have been performed with regard to the optimal so-
lution obtained in the second variant. A forecast using the finite difference method
has been calculated for 10 x 10 m mesh grid assuming in grid nodes well discharges
taken from Table 1 (variant 2). The forecast results are presented in form of water
table lines in Fig. 6. It can be noticed that the required drawdown (over 15 m) has
been attained in the desired area. Some insignificant deviations of the drawdown can
be explained by the fact that the method used for the forecast calculation is different
from the one used for response coefficients and by imperfection of the interpolation
procedure determining the water table lines.

5. C‘onclusions

Application of the response matrix method to a model of optimal management of
water pumping from an aquifer is especially recommended, if it is possible to use
analytical formulae to calculate the response coefficients. Otherwise, methods of nu-
merical simulation can be used. The number of constraints is usually much smaller
than in the case of considering of difference equations as constraints in the linear pro-
gramming. The maximum number of constraints in the method used in this paper is
equal to the total number of critical points (confinement imposed on drawdown) and
tripled number of wells (upper and lower limit of well discharge and drawdown limit
for every well). The optimal solution is influenced by the number and layout of the
critical points, so an important problem is proper choice of these. A moderate number

st S s s e e
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of constraints enables utilisation of IBM PC XT/AT class computers for data prepa-
ration and problem resolving that has been confirmed by the calculations presented
here.
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Summary

The possibility of applying ground water flow optimizing methods using linear pro-
gramming is presented in the article. Optimization of water pumping from an aquifer
using vertical wells is considered. Two methods of applying the linear programming in
ground water flow problems are described in the introduction. The first (“embedding
method”) consists in incorporation of hydraulic equations into the optimization mo-
del. Linear algebraic equations resulting from e.g. the finite difference method become
the linear programming constraints. Pumping or recharge rates in the nodal points
are usually decision variables. The second method is based on so-called response co-
efficients (“response matrix method”), which define changes of ground water level
“in arbitrary chosen points (“critical points”) of the aquifer, resulting from unit rate
pumping from each well. The coefficients are only once calculated and then used to
determine the objective function and constraints. The number of constraints depends
on the number of critical points, but anyway it is much smaller than the first method
requires. Examples of the application of linear programming methods to problems of
pumping from an aquifer are presented in Chapter 2. Among other things the objec-
tive function and constraints are defined for the problem of an excavation dewatering
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using vertical wells with an optimal total pumping rate. Methods of response coeffi-
cients determining for steady and transient flow in confined and unconfined aquifer
are presented in Chapter 3.

A numerical example illustrating practical possibilities of application of optimiza-
tion models is presented in Chapter 4. For calculations the response matrix method has
been applied to solve the optimization problem of dry dock dewatering, known from
other publication. Computer programmes for IBM PC/AT generating data applicable
for standard linear programming packs and calculating the response coefficients have
been developed. The results of application of the optimization model in two variants
to the problem of dry dock dewatering are presented and a forecast of ground water
level changes has been calculated in order to verify the optimal solution obtained.

Model optymalnego sterowania poborem wody z warstwy
wodono$nej

Streszczenie

W artykule przedstawiono mozliwosci zastosowania programowania liniowego do
optymalizacji poboru wody z warstwy wodonoénej za pomoca studni pionowych. Omé-
wiono model optymalizacyjny wykorzystujacy tzw. wspolezynniki wplywu, charakte-
ryzujace zmiany poziomu zwierciadla wody w wybranych punktach warstwy wodo-
nosnej, spowodowane jednostkowym poborem wody z poszczegdlnych studni. Podano
sposéb obliczania wspolezynnikéw wplywu w warunkach przeplywu w ograniczonej
warstwie wodonoénej oraz dla przeplywu za swobodnym zwierciadlem. Sformulowano
funkecje celu i ograniczenia dla zadania minimalizacji sumarycznego wydatku zespotu
studni odwadniajacych projektowany wykop. Przedstawiono wyniki obliczen optyma-
lizacyjnych dla zadania odwodnienia suchego doku. Wykonano prognoze zmian zwier-
ciadla wéd podziemnych w celu sprawdzenia uzyskanego rozwiazania optymalnego.



