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Abstract

The steady laminar MHD flow of a viscous fluid through a narrow space be-
tween two fixed surfaces of revolution, having a common axis of symmetry is
considered.

To solve this problem the MHD boundary layer equations are used and
expressed for the axially symmetric case in a curvilinear orthogonal coordinate
system z, 9, y connected with one of the surfaces.

The method of averaged inertia terms is used to solve the boundary layer
equations.

As a result, one obtains formulae expressing such flow paremeters as the
velocity components vz, vy and the pressure p.
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1. Introduction

The steady and unsteady laminar flows of incompressible or compressible viscous
fluid in a slot between surfaces of revolution have been examined theoretically and
experimentally.

In recent years, considerable attention has been paid to the potentiality of liquid
metals as lubricants utilized under the high temperature at which conventional lubri-
cants would undergo some undesirable physical changes. Although the liquid metals
such as mercury, sodium, and sodium-potassium alloy, etc. have a defect as lubricants
since their load-carrying capacity becomes smaller due to low viscosity, they can still
be considered to be suitable as lubricants for bearings operating at high temperature
because of their stability at high temperature and due to their large thermal conduc-
tivity. Moreover, since the liquid metals are good electrical conductors, it is possible
to increase their load capacity by utilizing the electromagnetic ficld and to eliminate
the foregoing defect sufficiently, thereby alleviating the drawback of low viscosity.

Snyder (1962) has made theoretical investigations and showed that this defect can
be overcome, in the case of a plane slider bearing, by the application of normal (to
the bearing plane) magnetic field. This has created interest in other authors to study
the magnetic effects in the field of lubrication.

In the beginning, investigations have been made to analyze the effects of magne-
tic field in lubrication problems while neglecting inertia effects. For these occasions,
it has become important to consider the inertia effects. For these occasions, it has
become important to consider the inertia effects in lubrication problems, due to in-
crease in speed and use of lubricants of small viscosity. Dowson (1961) has investiga-
ted the inertia effects (rotational lubricant inertia) in hydrostatic thrust bearings for
non-magnetic fields. In the papers (Shukla and Kapur 1967, Kamiyama 1969, Agrawal
1970, Kapur and Verma 1975, Salem et al. 1982, Salem et al. 1983) the same problem
has been considered to study the effects of interactions of inertia effects and magnetic
fields.

The papers (Savage 1964, Che-Pen Chen 1966, Elkouh 1967, Patrat 1975) contain
the theoretical analysis of the radial inertia effects in the non-magnetic flows between
parallel disks. The same problem for a magnetic field is considered in the papers
(Kapur and Verma 1975, Salem et al. 1982).

The experimental studies of radial non-magnetic flows are presented in the papers
(Peube and Che-Pen Chen 1964, Che-Pen Chen 1966).

The more general problem of viscous incompressible fluid flow in the slot between
surfaces of revolution has been considered in the papers (McAlister and Rice 1970,
McAlister and Rice 1972, Walicki 1974, Walicka 1989, Walicka 1993).

The viscous throughflow between corotating and stationary surfaces of revolution,
whose shapes are given by the functions satisfying any conditions for which similar
solutions exist, has been solved in the papers (McAlister and Rice 1970). The same
flow in a more general statement is examined in papers (Walicka 1989, Walicka 1993).
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A similar problem for magnetic field is considered in papers (Walicki 1976, Walicki
et al. 1978, Walicka 1990). In paper (Walicki 1976) the inertia effect due to circumfe-
rential velocity is examined and in papers (Walicki 1978, Walicka 1990) - the inertia
effect due to longitudinal velocity.

This paper is an attempt to investigate the steady laminar flow of an electrically
conducting and incompressible fluid in a narrow slot between fixed curvilinear surfaces
of revolution, having a common axis of symmetry, in the presence of a magnetic field
of constant magnitude, as shown in Fig. 1.
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Fig. 1. Slot of small thickness between fixed surfaces of revolution. Coordinate
system and geometry of surface

Basing on the method of average inertia, as in paper (Walicka 1993), we have ana-
lysed the influence of the inertia terms and magnetic field on the pressure distribution
in the slot.

The problem is solved under the assumption that the Reynolds magnetic number
is small which permits us to neglect the induced magnetic field (Sutton 1965).

2. Basic Equations

Let the inner surface be described by function R = R(z) which denotes the radius
of this surface. The thickness of the slot is described by function h(z) which denotes
the distance between the curvilinear surfaces measured along a normal to the inner
surface. An intrinsic curvilinear orthogonal coordinate system z,,y linked with the
inner surfaces is shown in Fig. 1.

The physical parameters of the flow are the velocity components vz, vy and pres-
sure p. With regard to the axial symmetry of the flow, these parameters are not
dependent on the angle 9. Let the vector of magnetic field B(0,0, By) be perpendicu-
lar to the inner surface.

The equations governing the steady flow of an electrically conducting and incom-
pressible fluid are (Sutton 1965):




28 A. WALICKA

the continuity equation
v.-V=0,
the momentum equation

p(VV)V = pF —Vp+puV?V +T x B,

where:
p — is the fluid density,
F - the body force,
p - the pressure,
V - the fluid velocity,
T - the current density,
B - the magnetic field,
p — the fluid viscosity;

together with Maxwell’s equations

VXF:O,
VxB=upul,
V.-E=0,
V-B=0

and Ohm’s law
I=0(E+V x B),
where:

E - s the electric field,
e — the permeability of the free space,
o — the electrical conductivity.

(1)

(2)

Since the surfaces limiting the slot are surfaces of revolution, Lamé’s coefficients
H.,Hy, H, for the above mentioned curvilinear coordinate system z,d,y take the

form (Walicka 1989):
H:=1, Hy=R(z), Hy=1.

If the body force is neglected (usual assumption for the flow in a thin layer), the
equation of continuity and the equations of motion in curvilinear coordinates can be

expressed as:

1 O0(Rvy) | Ovy _
R oz T3 "

(5)
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2 2
p(vtaﬁ 31-'3):_?2_'_“(3 v=+6'u,,+

e + vy% oz 9z? dy?
R' Ov, R? !
* R R ?"’) = ?
0= Isz_Iszr (7)
Avy dvy\ _ 0Op 0%y 0%,
p(vza—x-i'vya‘)—_‘_g;'i"‘ Bz2 2 3y2+
R dv
+ E —51) + I By IyB:: (8)

Let us assume that
h(z) << R(z)

and the assumption on the velocity orders which can be expressed in the form

vz=0Vm) v,=0 (meﬂ)
Rm
where: V,,, is the mean value of the velocity of longitudinal flow and h,,, R, are
respectively the mean values of h(z) and R(z) in the slot.
Together with these usual assumption for the flows in a thin layer, the following
assumptions regarding the magnetic field are made:

- the induced magnetic field B;, By and induced variation in B, are assumed to
be very small as compared to By;

— from the second equation of the set (3), the order of magnitude shows that By ~
0 and By & ptehm Vin By, where By is the applied magnetic field in direction y.

Again, it is only for the very high longitudinal velocity that an induced magnetic
field would become comparable to By. Since the induced magnetic field is small, only
terms in the equations of motion containing B, = By are being taken into considera-
tion and expressed as:

Oug v\ _ Op v,
p(vz‘a';+vy'a'—) —_a_z"'ﬂ Ey—'z-'i'Il’Bﬂy (g)
0 = I, By, (10)
_or
0= % (11)

where: y — variation in pressure is negligible.
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From Maxwell’s first and third equation and from Ohm’s law, E vanishes every-
where and

Iy = —ov, By. (12)

Thus equation (5) is given by

v, v, d v,
P( * Bz -ty a )——£+#6—:2—U330=- (13)

The problem statement is complete after specification of boundary conditions.
These conditions for the velocity components v, and v, are the usual non-slip condi-
tions stated as follows:

vz=vy=0 for y=0
Vr = Uy =0 for y:h (14)

Moreover, in the inlet and the outlet of the slot the boundary conditions for pressure
can be written in the form

p=p; for z=uz;
p=po for z=1x (15)

thus:
z; — denotes the inlet coordinate and
zo — the outlet coordinate.

3. Solution of the Reduced Equations

The equations governing the steady flow of an electrically conducting fluid in the slot
between curvilinear surfaces are the equation of continuity (5) and the momentum
equation (13).

These equations are the MIID boundary layer equations. Convective terms, re-
presenting the inertial contributions of the fluid, in the momentum equation make
it difficult to find the solution in closed form. Following (Walicka 1992), the inertia
terms are approximated by averaging them over the slot thickness. For this purpose
we multiply the equation of continuity (5) by pv. and add the obtained expression to
the momentum equation (13). As a result we have

R 8\, 08 _dp v, 2
P[(E+5;)Uz+'5§(”="y)]—'ﬂ+#a—yz o Byv;. (16)

Then, averaging the left-hand side of Eq. (16) across the slot thickness we can write

h
’ "l L, P
?{f [(R 8::) vy + 3y (v,vy)] dy = +p ¥ —oBjv;
0



ON THE AVERAGED INERTIA METHOD IN THE MHD VISCOUS FLOW ... 31

and after integrating and taking into account boundary conditions (14), we obtain
the following equation:

8vg
a: - kv, = f(z), (17)
where f(z) is defined as
h
_ldp p (R 08 2 '
f(z)_ﬂﬂ-'-y_h ("ﬁ'i'a—z)/“:dy (18)
0

and

k= Bo\/g (19)

Integrating the equation (17) we obtain:

f 1—chkh
Vs = 13 (ch ky—1+ ey ————sh ky) g (20)
Hence from Eqgs (5) and (20) the component of velocity vy is given as:
1 0 [Rf —chkh
%="F 3 { [hky ky + —Eh ————(chky - 1)]} (21)

The flow rate @ is defined as

h
Q= 21rR/v,dy
0

Using the expression (20) for v, we obtain after integration

2rRf

= u (22)
and hence
Qk3
f=57M (23)
where:
= s::"; My = 2(ch kh — 1) — khsh kh (24)
1

Applying the formula (23) in Eqs (20) and (21) we obtain the final expressions for
the components of velocity:

o Qb
vy = mM(ch ky — 14 M, sh ky), (25)
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Qkh' Ms(1 — chky) — My(shky — ky)
"= 2R M?

(26)

where:

My = l—hc#’ Mj = (sh kh — kh)(1 — chkh), My = (1 — chkh)?. (27)

8
To define the pressure distribution let us go to the expression (18). By using Eqs (23)
and (25) in Eq. (18) and after simple calculations, we obtain the following differential

equation for pressure:

3 2 :
dp _ Qk°p M PQk(i_'_a)E (28)

dz ~ 2r R 4n%h oz
where:
(ch kh — 1)[(ch kh + 2)kh — 3sh kh]
M2 (29)
Integrating the equation (28) we have
(30)
where:
M 1 (R 8\ G
B(z) = fﬁ—d:c, Disl= jz (E* 5;) —pde. (31)
Applying the boundary conditions (10), for the slot of constant thickness we obtain
g QuH*M pQ*HG (1 1
P—P-+W[A(3) Ai] - Bahl \TE R_;? (32a)
or
_ QuH3M pQ*HG (1 1
P—P0+W[A(¢).—AO]"W TR (32b)
where:
Az) = / 92 A= Az:), Ao = A(zo) (33)

and H = kh is the Hartmann number.
By subtracting the formulae (32a) we obtain the relation for the pressure drop in
the slot:
QuH3M

pQ?HG (1 1
Ap pl Po Qth (AI AU) 87{’12 (R,z Rg) (3 )
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Note that for H — 0 (i.e. also k — 0) we have the following relations

H3M — (-12), HG — -g

and the differential equation (28) has the form

dp _ 6pQ 1 | 3pQ* (RA) (35)
de = m Rh® " 1072 (Rh)¥
Hence the pressure distribution is given as:
_ 6uQ dz  3pQ%* 1
p= = ./ RR3 ~ 2072 (RR)? (36)

These relations are identical with those obtained in (Walicka 1993). In the above
expressions the “primes” denote derivation with respect to z.
4. Example of Applications
4.1. Non-dimensional Form of the Solution

Equations (25), (26) and (32a) may be non-dimensionalized using the following para-
meters:

.z - R Y
= — R=—, ==
. SR P
~ _ Uz = _ U v . \P—po)ph
vz—vﬁ, ‘Uy—VO B D—TZ'RO—'—, (37)
RA_(L)Re, L
0 I

where: 1} is the average velocity in the outlet cross section of the slot defined as:
_Q 1
= 27 Roh
R, and R) are the Reynolds and modified Reynolds numbers respectively.
The non-dimensional formulation is then (for the slot of constant thickness)

HM
R
¥y =0, (39)

Vo

(ch Hy— 1+ Mash Hy), (38)

Vp =

X aiiall Lwean - RABGOfik
P = RAH>M[A(%) — Ag] - AT (ﬁ - 1) : (40)
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4.2. Flow Between the Conical Parallel Surfaces

For the conical parallel surfaces shown in Fig. 2 the geometric relations are given as:

h
* y dea r X
%L d R,
[+ R&
| Ri )
0 fc;f z
S,

Fig. 2. Slot between conical parallel surfaces

R=2zsina, R; = z;sina, Ry = z¢sina, h = const.
The non-dimensional quantities are:

o0 ~ N 1

R=2Zsina, Ro=1, $g= —,
sin o
and the non-dimensional formulation is given as:

. HM

v,_isina(chHQ—I+Mgsth),

oy, =0,

. R\H3M . - RIHG 1
p:W(lnz—lnxn)— 3 i:ﬂsinza_l ’

(41)
(42)

(43)

Note that the solution in this case depends on the angle and is also true at the
angle a = 90°. This means that the above formulae give the solution for flow between

parallel disks.

Figure 3 shows the profiles of the velocity component ¢, for different values of Z
(different positions of the cross-section) and for two values of Hartmann numbers: H =
1 (continuous lines) and H = 0 (dashed line, non-magnetic flow) for the flow between
parallel disks (a = 90°). It can be seen from this figure that the differences between
the velocity profiles for samll values of H are only perceptible in the cross-sections
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lying near the inlet to the slot; it is seen from the formula (41) that these differences
increase with the increase of the magnitudes of the Hartmann number H.

n
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A 2 3 4 S5 U
Fig. 3. Dimensionless profiles of the velocity component v, for the flow between
parallel disks

Figure 4 shows pressure distributions for two values of Hartmann numbers (o =
90°): H = 1 and H = 0 (non-magnetic flow).

The dashed lines present the results of experiments given by Chen (1966) for the
non-magnetic flow between parallel disks. The “dash-dot” lines present the pressure
distributions without inertia effects, i.e., the pressure distributions obtained from the
formula

p= R\H*MInZ. (44)
The pressure distributions for H = 0 are taken from (Walicka 1993).
4.3. Flow Between the Concentric Spherical Surfaces

For the concentric spherical surfaces shown in Fig. 5 the geometric relations are given
as:

R=R,sinyp, ¢ = Ri' R; = R,sinp;, Ry = R,sing, h = const.
]

The non-dimensional quantities are (for ¢ = 90°):
R=sing, Ro=1, i=¢.
The non-dimensional formulation is given as:

. HM
Uy = sinp(Ch Hn—1+4 M.sh Hy), (45)
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Fig. 4. Dimensionless pressure distributions for the flow between parallel disks

74 )
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Fig. 5. Slot between concentric spherical surfaces
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iy =0, (46)
5= Ry\H®M Intan £ - 271G (—12—_— 1). (47)

Figure 6 shows the pressure distributions for two values of Hartmann numbers:
H =1 and H = 0 (non-magnetic flow).

7

o X° 450600 2R . 90° ¥
Fig. 6. Dimensionless pressure distributions for the flow between concentric spherical
surfaces

The “dash-dot” lines present the pressure distributions without inertia effects, i.e.,
the pressure distributions obtained from the formula

5=R,\H3Mlntg§. (48)

The pressure distributions for H = 0 are taken from (Walicka 1993).
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5. Conclusions

Application of the method of average inertia terms in the momentum equation to
study the throughflow of viscous fluid between surfaces of revolution in the presence
of normal magnetic field yields the formulae defining the velocity components vz, vy
and pressure p.

A comparison of formulae of this paper with formulae which are obtained by the
method of asymptotic solution presented in (Walicka 1993) shows that:

— the formulae defining the velocity components v; and v, obtained by the method
used here determine the flow field approximately without the influence of inertia
terms of the momentum equation; ‘

— the formula for pressure distribution includes the effect of inertia forces.

A comparison made for the special case of H = 0 with experimental data of
Chen (1966) for the throughflow between parallel disks indicates the conformity of
theoretical and experimental data.

It can be concluded from the graphical presentation of the results obtained here
that the pressure increases if the magnitude of the Hartmann number H increases.

The problem of convergence of the solution for the pressure distributions obtained
by the present method is similar to that of the asymptotic solution discussed in
(Walicka 1989), where a good convergence for Ry < 1 is established for the flows
between surfaces of revolution and non-magnetic flow.

It may happen that for a magnetic flow with the same value of R, and for small
H = 0 (1) the convergence of the solution is also good.

In conclusion, it may be noted that the averaged inertia method gives the formulae
which lead to a sufficiently accurate determination of the pressure distribution in
considered flow configuration.
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Summary

In the present paper the laminar magnetohydrodynamic (MHD) flow of an incom-
pressible and electrically conducting, Newtonian fluid, in a narrow space between two
fixed surfaces of revolution, having a common axis of symmetry is considered under
the action of a magnetic field which vector is normal to one of the surfaces.

It is found that the equations of motion can be reduced to the MHD boundary layer
equations expressed in a curvilinear orthogonal coordinate system z, 9,y connected
with one of the surfaces.

To solve the problem the method of averaged inertia terms is used which gives an
approximate solution in a simple closed form.

As a result, one obtains formulae describing the velocity components and pressure
distribution in the narrow space. Two particular cases of throughflow between conical
and spherical surfaces are more exactly discussed.

O metodzie uérednienia w lepkim MHD przeplywie w
szczelinie miedzy nieruchomymi powierzchniami obrotowymi

Streszczenie

W pracy rozwazono ustalony laminarny MHD przeplyw cieczy lepkiej w szczelinie
miedzy nieruchomymi powierzchniami obrotowymi o wspdlnej osi symetrii.

Do rozwiazania zagadnienia uzyto réwnai MHD warstwy przysciennej dla prze-
plywu osiowo-symetrycznego, wyrazonych w krzywoliniowym ortogonalnym ukladzie
wspolrzednych z, 9, y zwigzanym z jedna z tych powierzchni.

Réwnania warstwy przysciennej rozwigzano stosujac metode usrednienia czlonéw
bezwladnoéciowych.

W wyniku otrzymano zaleznoéci okreélajace takie parametry przeplywu jak skla-
dowe predkosci vz, vy i cisnienie p.




