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of Fluid

1. Introduction

Vibrations of structures immersed in fluid and generation of water waves are of
practical importance. Many engineering problems of this kind are associated with the
construction and exploitation of offshore structures. From the theoretical peint of view,
such problems are complicated and difficult to solve, since in a general case we have
to deal with coupled problems of the structure-fluid interaction in the presence of a
free surface of the fluid. There are no mathematical methods which provide effective
solutions when finite displacements of a structure and non-linear free surface conditions
are taken into account. Thus, many simplifying assumptions are introduced to obtain
a reasonable description of a physical situation. Usually such simplifications assume
some kind of linearization of boundary conditions. Moreover, it is frequently assumed
that displacements of a structure are infinitesimal and the fluid flow is potential. Such
a linear theory of vibrations and generation of water waves gives results which in
some cases fit experimental data while in other cases may be used as a starting point
for consideration of non-linear effects. But, even in the case of the linearized theory,
constructing a general solution is a difficult task, especially when unsteady problems
are considered. The transient vibrations of a structure submerged in fluid, the box drop
problem and the problem of forming a surface gravitational wave starting from rest are
examples of the latter cases.
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The aim of the present work is to investigate transient vibrations of a rigid block
with a single degree of freedom submerged in fluid of constant depth. Special attention
will be paid to the examination of the added mass of fluid which is not constant during
vibrations. The problem is related to initial generation of water waves by a piston type
wave maker and, therefore, in the second part of the paper, an initial generation of
water waves in a channel of constant depth is considered.

Several unsteady problems of this kind were discussed by Lamb (1975). Within the
framework of the linear theory Stocker (1957) analyzed a variety of problems involving
the initial motion of fluid. He obtained the closed form solutions for imposed initial
conditions at the starting point. The important cases of waves due to disturbances at
a point on the free surface were studied in detail. Some general theorems associated
with the initial value problems in hydrodynamics may be found in Wehausen and La-
itone (1960). These authors studied many time-dependent Green functions and quoted
extensive literature on the subject. Recently, a number of papers have appeared where
more particular problems of steady and unsteady motion are investigated. Biesel and
Suquet (1951) formulated the theory of water waves generated in a flume of constant
depth by a moving rigid plate. Fontanet (1961) derived the second order solution to
the wave maker problem based on a Lagrangian formulation. His solution, however,
is difficult to evaluate as compared to the more familiar Eulerian description. Waves
generated by a single pressure impulse were investigated by Massel (1968). The func-
tion of velocity potential was obtained by adapting the time dependent Green function
to the boundary and initial conditions. The same author formulated and solved the
problem of generation of surface waves due to longitudinal (Massel 1970a) and, side -
(Massel 1970b) ship launching. The problem was solved under the assumption that the
distribution of pressure on the hull body may be approximated by a linear function. In
his next paper (Massel 1972), the problem of generation of surface waves by the motion
of a rigid body was considered. The problem of water waves generated by landslides
in reservoirs was investigated by Noda (1969). He considered two types of landslides:
a vertical one modelled by a box falling vertically and a horizontal one, modelled by a
wall moving horizontally. A theoretical solution to the time dependent boundary dis-
placement was examined against experimental data. The generation of water waves by
a piston-type wave-maker starting from rest was investigated by Madsen (1970). The
theoretical results obtained were corhpared with experimental data. The experiments
showed second order effects in wave amplitudes and thus an approximate second order
wave maker theory was discussed.

Concerning vibrations in fluid, the very important and earliest contribution is that
of Westergaard (1933). He described the hydrodynamical forces acting on dams due
to seismic vibrations. The solution was obtained within the linear theory of compres-
sible fluid neglecting surface waves. A similar problem of vibrations of dams during
earthquakes was considered by Nath (1973). He also presented an extensive survey
of research in structure-fluid interaction. Norwood and Warren (1975) analyzed the
transient response of a plate—fluid system to stationary and moving loads. They inves-
tigated possible wave motion in a fluid half-space which supports an infinite elastic
plate. Wilde (1988) presents a review of papers on related steady state problems.
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2. Transient Vibrations of a Rigid Block in Fluid

We will confine our attention to the plane problem of vibrations of a rigid block in
a semi-infinite layer of fluid as shown in Fig. 1. The block with mass M is supported

z
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Fig. 1. The block-fluid system

-

by a linear spring characterized by the elastic coefficient k. It is assumed that there
is no friction and no fluid flow between the block and the bottom of the layer. The
compressibility of the fluid and its viscosity are neglected and the potential theory is
adopted. The block and the fluid are at rest for time ¢ < 0. The fluid flow is induced
by horizontal vibrations of the block due to an assumed initial displacement from its
equilibrium position and then, its abrupt release. In other words, the vibrations are
due to a constant external force which is suddenly applied to the block and which
remains unchanged during the time of vibrations. Within a small range of time from
the beginning of the motion, this problem may also be considered as an impulsive

generation of motion. '

2.1. Impulsive Generation of Motion of fhe Block—Fluid System

Let us consider the case in which a finite impulse of an external force is applied to
the block in a horizontal direction. Since an impulse is regarded as an infinitely great
force acting for an infinitely short time, effects of finite forces during the interval are
to be neglected. The external impulse creates the resultant impulsive pressure within
the fluid. The latter problem of impulsive generation of the fluid motion starting from
rest was considered by Lamb (1975) and we will follow his ideas. According to Lamb
(1975), the impulsive pressure in the fluid should satisfy the Laplace equation. Moreover
there is a simple relation between the pressure and the velocity potential. Denoting the
impulsive pressure in fluid by I, that relation takes the form:

I=—p-¢+C (1)

where ¢ is the velocity potential, p the fluid density and C a constant.

Let F' denote the impulse of the external force P acting on the block during the
time increment At. The corresponding velocity of the block may be formally written
as:

v=a-At (2)
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where a is the acceleration of the block.
Accordingly, the displacement of the block is

1 21 b
As—é a - (At) i 5t (3)
and the external work performed is given by:
L=P-A3=%-F-v. 4)

It is seen, that for finite values of F' and v the displacement of the block is a small
quantity which in the limit At — 0 falls to zero. Therefore, the elastic force due to the
elongation of the spring also falls to zero. At the same instant, the kinetic energy of
the block is:

T1=%-M-v’. (5)

In order to find the relevant kinetic energy of the fluid we shall adopt the potential
formulation. Thus, the energy may be expressed in the following form (Stocker 1957):

1 ad

where C' denotes the contour of the fluid domain.
To calculate the latter energy, it is necessary to find a solution of the Laplace
equation for the velocity potential:

Ve =0 (7)
satisfying given boundary conditions. On the bottom of the layer there is no flow
through the boundary and thus we have:

a%

9z
On the line z = h (Fig. 1) the pressure is constant and without loss of generality we
may assume:

¢|z=h =0. (9)

= 0. (8)

z=0

The boundary condition on the common surface of the block and the fluid reads:

ao
Jz
To the above boundary conditions we have to add the condition that for z — co the
potential and its derivatives die out. Keeping in mind the boundary conditions, the

solution of the Laplace equation (7) may be constructed by means of the separation of
variables. This simple procedure yields the solution:

=t (10)

00
d = —EA,—-%-e""'”-ooska, (11)

g=1 3
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where
92j —1
TR |
are eigenvalues of the problems and A; (7 = 1, 2, 3...) are constants to be determined
from condition (10). Substituting (11) into (10) and making simple manipulations
provides the relation:
o 4_2 (_1):’-!-1
T 2i-1)
Finally, from substitution of (13) into (11) it follows that:
= (<1

o=——": ~ 1 k% cosk;z. 14
7 X1 ’ (14)

k; = j=1,2 3... (12)

=12 3... (13)

Having the solution, we can perform integration (6) to obtain:

1
T,==-p-16-—

5 ol (15)

Z (21 -1)

The total kinetic energy of the block—fluid system can be written as:

1 a1,
T=Ti+Tx= M+p-16- o 2(2‘7__1—)3 (16)

Since the system considered is conservative, the energy is equal to the external work
(4). From comparison of equations (4) and (16) the following relation results:

F=M* v, (17)

where
M*=M+p-16- 2(21_1 (18)

It is seen, that motion of the rigid block in contact with fluid is similar to motion of
the block without fluid but with its mass greater by the additional term:

M,=p-16- (19)

Z ey

Eq. (19) describes the added mass of fluid. More precisely, the added mass obtained is
the impulsive added mass of fluid. The corresponding angular frequency of vibrations
of the block in contact with fluid is:

k
M+
This frequency is smaller than the frequency of free vibration of the block without the

fluid. It should be stressed, however, that the solution obtained may be used only for
small lapse of time from the beginning of motion.

w =

(20)
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2.2. Undamped Vibrations of the Block—Fluid System

As was mentioned earlier, the problem of transient vibrations of the block—fluid
system due to the initial displacement of the block may be solved directly by integration
of the differential equations of motion of the system with respect to time. Assuming
the potential flow and omitting surface gravitational waves, the differential equation
describing the block motion is:

M- i +k 2z =-W, (21)

where z is the displacement of the block referring to its neutral position and W is

the resultant force of the fluid pressure acting on the block. As in the previous case,
the function of velocity potential may be written in the form:

2 1
b =— E A;(t) - ik e 57 . cos kjz, (22)
i=1 J

where k is defined by (12) and A;(t) (j = 1,2,3...) are functions dependent on time.
The boundary condition on the common surface of the block and fluid yields:

od

T = —
~ oz
T

=" Aj(t) - cos kjz, (23)
1=1

=0
where & is the velocity of the block. From Eq. (23) it follows that:

(_1)j+l"

Aj(t)=2- B

., §=1,9% % (24)

Substitution of (24) into (22) gives:

AR s
= — i N B b .z
o = Z @1 e cosk;z (25)

J=1

The pressure of the fluid is given by Stocker (1957):

8:-p-h- -’_{_»' o0 (_1)j+1

‘Z.(Zj—l)z e

i=1

—k;z

p=—p-¢p= =3 -cos kjz. (26)

& i(gj_il)—s (@7)

i=1

Now, the resultant of the pressure acting on the block may be calculated as:
dz=16-p-

h
W=/p
0 lz=o0

Substitution of (27) into (21) gives:

h?
3

m

M- i +k oz =0 (28)
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where the mass M* is defined by (18).
The general solution of the homogeneous differential equation (28) is:

z (t) = A-coswt + B -sinwt, (29)

where w is defined by (20) and A and B are constants. Assuming that at the starting
point (¢ = 0*) we have the initial conditions:

g (t=0)= 20, o (t=0)=0, (30)

the solution (29) assumes the form:
z (t)= zo -coswt. (31)

As seen, the solution obtained describes the free undamped vibrations of the block with
a mass which equals the sum of its own mass M and the attached mass of fluid M,.
For the considered case of zero pressure on the upper boundary of the layer, the added
mass of fluid is exactly equal to the impulsive mass of fluid obtained previously. The
solution was constructed under the assumption that there were no surface gravitational
waves. In reality, such vibrations of the block may generate surface waves and thus a
damping of vibrations would occur. The damping results from transmission of energy
from the block to infinity by means of generated waves. Thus, the next case to be
considered when the surface gravitational waves are taken into account.

2.3. Damped Vibrations of the Block—Fluid System

Consider now the same problem of initial vibrations of the block—fluid system but
with wave condition on the upper surface of the layer. The equation of motion (21)
is still in force, but the resultant pressure force W should be calculated in a different
way. Instead of the boundary condition (9) we have the following (Stocker 1957).

SUELLPN
9%z~
where g is the gravitational acceleration.

In order to find a solution of the problem for arbitrary time it is convenient to divide
the velocity potential into two parts:

e=yp+¢ (33)

(32)

z=h

each of them satisfying the Laplace equation:
V=0, V=0 (34)
and, the relevant boundary conditions:

d¢

= =0. (35)

=0, "Ib

z=0
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The boundary condition on the upper surface of the layer assumes the form:

(5+9 g—+g gf)

The remaining boundary conditions are:

= 0. (36)
=h

ag| oyl

E z=h B 0’ E z=0 =5 (37)
and:

ow|

£ (38)

Both the potentials should disappear in infinity. The potential ¢ and corresponding
fluid pressure are given by (25) and (26) respectively. In order to find the second
potential ¢ the Fourier cosine transform is applied, namely (Sneddow 1951):

o* = ;}oq&(z, z, t) - cos(sz) dz

oo 39
=2. b[ ¢*(s, z, t)- cos(sz)ds o

The transform of the Laplace equation for the potential ¢ leads to the ordinary differ-
ential equation:
62 ¢:
822
Taking into account the bottom boundary condition and its Fourier transform, the
solution to the differential equation (40) may be written in the form:

#*(s,z,t) = A(s,t) - cos h(sz), (41)

— % ¢"=0. (40)

where A(s,t) is a constant of integration. The Fourier transform of the boundary
condition (36) is:

e a¢* op*
(¢ LAY AL E)
Now, we have to evaluate the Fourier transform of the potential (25). Simple manipu-
lations yield: -

=0. (42)
z=h

4-'
. N VA
¥*(s,2,t) = Z G-1 B+a

i=1

- cos k;z. (43)
The derivative of the transform with respect to z, taken at z = h, is:

apr| 22 1
0z Tk k2 4 g2

J+1 "

(44)

z+h




TRANSIENT VIBRATIONS OF A SIMPLE STRUCTURE... 75

The series in (44) may be brought to the closed analytical form (Gradsztein, Rizik
1962):
f: . = 5. - tanh(sh) (45)
—~ki4s? 2.3 ’

=11

and thus, equation (44) may be rewritten as:

oy T ta.nh(.sh). (46)
0 |y ~ s
Substitution of (41) and (46) into (42) gives:
: 9- 2
A -cosh(sh) + A-g-s-sinh(sh) + -tanh(sh) = 0. (47)

Finally, the non-homogeneous second-order differential equation is written in the form:

A+’ A+ F(s)- & =0 (48)
where:
2 _g'tanh(.sh)
r’ = g-s-tanh(sh), F(s)= s Toahloh)’ (49)
The general solution to equation (48) is:
i
A=Cy-cosrt+cy-sinrt — F_£s_) . / z (£) -sinr(t — §)d¢. (50)
In this way, the Fourier transform of the potential ¢ is expressed as follows:
#"(s,z,t) = [Ci-cosrt+ C,-sinrt+
F(s) |
= j & (€)-sinr(t - g)dg] . cosh(sz). (51)
0
The constants C; and C, are to be found from the initial conditions:
t =0)|.=4 =0, *t=0)|.=n =0
#t = 0)lon = 0, ¢7(t = 0)]cs -

$(t = 0)lsh = 0,24 (£ =))]s=n =0.
It follows from (52) that C; = C3 = 0 and, finally:

(s, R = -Efi)- f & (€)-sinr(t — €)dt - cosh(sz) (53)

0
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The inverse Fourier transform of (53) provides the solution:

=]

_ g ta.nh(sk _cosh(sz)
Ho2t) = T -/ cosh(sh) %
. % [ & ©-sinr(t ~ €)de - cos(sa)ds. (54)

Having the solutions (25) and (54) we can write the expression for the pressure:

80 % o (_jyn 5
= —p-Q= LS _ .o~ kiT | " Py
p = —p¢ = 2 (2}._1)2 e coskjz + 3
T tanh(sh) cosh(sz) . _
/ 5 cosh(sh) & (£) - cosr(t — £)dE - cos(sz)ds. (55)
The fluid pressure acting on the block is:
8:p-h- 2 & (-1)+1 9
_ = - = . : P g
plz=0) = = ;(2]'—1)2 cosk;z + X
Ttanh(sh) cosh(sz) | .
x j S g j £ (€) - cosr(t — £)dtds (56)
and the resultant of the pressure is given by the formula:
16-p- 2 A\? = 1
v ——") Loro
2-p-g T(tanh(sh)\® | .
+ =L oj ( - oj & (€) - cosr(t — £)déds. (57)

It can be seen, that the first term on the right-hand side of (57) is equal to expression
(27) obtained previously for the case of zero pressure on the upper boundary of the
layer. Substituting (57) into (21) and making simple rearrangements one can obtain:

=

x j & (€) - cosr(t — £)déds = 0. (58)

0

M- & +k- 2 +2-7rﬂ

- Oy

This integro—differential equation describes the transient vibrations of the block when
surface gravitational waves are taken into account. The equation will be solved nu-
merically by means of the §-Wilson method (for details see Bathe 1982). In the nu-
merical procedure the solution is constructed step by step for the chosen sequence
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t = 1At, 2At, 3At... of time steps. Having the solution it is also possible to find the
free surface elevation:

nat) =2 [BBER 4 (6)- cour(t — €)dg -con(oa)d (59)
(1] 0

which, in turn, needs calculations of the improper integral. To find a value 5 for chosen
parameters ¢ and z it is necessary to resort to approximate integration. The procedure
of the numerical integration will be described further.

2.4. Numerical Example

In order to illustrate the above theory some numerical calculations have been per-
formed. For chosen values of M, k, h, which serve as input data, the displacement z (t)

of the block was obtained by means of approximate integration of the differential equ-
ation (58). Then, following the solution obtained, the free surface elevation for a chosen
value of z was calculated. The displacement of the block is plotted in Fig. 2. Having

¥ lem]
M= 0,95 kg
k=120 Nfm .
= 11,2390 1/s
= 66BI0 15
H=0.40m

10 d=001m

\/&/ e e v
05 # =087 exp(-00551)

Fig. 2. Free vibration of the block

&

the displacement as a sequence of values of z (#;) where t; =i-At,i=1,2..., it is

possible to calculate the corresponding frequency of vibrations as well as the shape of
envelope corresponding to the damping. The latter curve was obtained by means of the
least square method. In this way the damping of vibrations of the block resulting from
transmission of energy by the generated waves was described by means of a constant
single damping coefficient. It can be seen, that the added mass of fluid for the case of
surface gravitational waves is smaller than the impulsive added mass. Thus, the cor-
responding frequency of vibrations for the case is greater than that obtained for the
case of zero pressure on the upper boundary. Fig. 3 shows the disturbance of the free
surface elevation at z = const. for the assumed time interval.

3. Initial Generation of Water Waves

Let us now consider the initial problem of forming surface wavcz}-‘,in the semi-infinite
layer of fluid starting from rest. The fluid flow is induced by horizontal displacement of
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qlem]
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0 © = 6,6830 1/s
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[\

-15

Fig. 3. Elevation of the free surface at z = 20.cm

a rigid vertical wall located at the beginning of the layer. The problem is similar to the
previous one, but now the displacements of the rigid block are assumed to the known
and described by the equation:

z =d-(1—coswt), (60)

where d is the amplitude and w is the assumed circular frequency of vibrations, respec-
tively.

In fact, the assumed form of displacement describes the harmonic generation of wa-
ves which for a long time after a motion has started is expected to reach a steady-state
harmonic generation. Our aim is to find the solution for the velocity potential as well
as the free surface elevation for the imposed excitation. Differentiation of (60) with
respect to time leads to:

v= =d-w-sinwt

(61)

= —d-w?- coswt,

8. 18.

a=

It can be seen, that the displacement z and the velocity v are both equal to zero at

t = 0. Like in the previous case it is convenient to divide the potential into two parts
(see 33). According to the first equation (61) and the boundary conditions (35-39) we
have:

8:d h-w

T2

©0 (_1)J'+1

' - e 5% . cosk:z - sinwt. 62
i=1 (2.7 = 1)2 ¢
J"—"

¢($! z, t) =

To find the second potential ¢ we apply the Fourier cosine — transform to its Laplace
equation. The resulting equations (40-42) are still valid, but now:

" _ 4dow & (-1)H 1
Vimag=- '2(2j—1)'k}+.s=

] s

- cos kjz - sinwt. (63)
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Following the transform the derivative with respect to z, taken at z = k is:

a* 2 d-w :

Ep ,_p. ; _,-21 k} - sinwt. (64)
And, in view of (45), the equation may be rewritten as:

N d-w

7 s Tta.nh(sh) - sinwt. (65)

Accordingly, in place of (48) the following equation holds:
A+r* A4 F(s)-sinwt =0, (66)
where:

g-d-w ta.nh(sh)
" cosh(sh)’

The general solution of the non-homogeneous equation (66) for the case r # w is:

r? = g-s-tanh(sh), F(s)= (67)

A=Cy-cosrt+C;- smrt+ () - sinwt. (68)

And for the case r = w, we have:

F()

A=C) cosrt+Cy- smrt+ ‘[2-w-t-coswt —sinwi] (69)

where C; and C; are constants of mtegrat.ion. Let us now consider case (68). The
corresponding solution is:

¢* = |Cy-cosrt+ Cy-sinrt + f‘(s)z -sinwt| - cosh(sz). (70)
w? —r

From the initial conditions at ¢ = 0 one has:

Gi=d, o iR (71)

r w:—r?

Thus, the inverse Fourier transform of (70) leads:

6 = 2-g-d-w jta.nh(sh) cosh(sz) 1 (12)

cosh(sh) e
X [sin wt — ?— -8in rt]'cos(sz)ds.

The final solution for the velocity potential is the sum of (67) and (72). According to
the solutions and the linearized boundary condition on the upper surface of the layer,
the free surface elevation is given by the formula:

2-d-w3_]°ta.nh(sh)_ 1
k3

w? —

n(z,t) = ol [cos rt — coswt] - cos(sz)ds. (73)
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The equation (73) is similar to that of Madsen (1970). The solutions (72) and (73)
are valid for r # 0. The case r # 0 leads to another solution of the problem. Since the
latter case corresponds to the isolated point r = w of zero measure, it does not alter the
result of integrations (72) and (73) and therefore, solution (69) may be excluded from
our considerations. Confining attention to solution (68) it is necessary to investigate
the behaviour of the integrands in (72) and (73) in the neighbourhood of the point
r =w. It cap be seen, that in the limit r — w, both denominators and numerators of
the integrands are going to zero. A more detailed investigation of the behaviour shows,
that the left-hand limit and the right-hand limit of the terms are finite and equal to
the same values. Taking the limit of the integrand (72) one obtains:

sinwt — £ .sinrt 1

3 =55 [w-t-coswt — sinwt]. (74)
Similarly the limit in (73) yields:

cosrt — coswt _ 1
wi-r? T 2.w

lim 5 [w-t-sinwt]. (75)

r—+w
T > w
<

Hence in conclusion, the integrands in (72) and (73) are bounded and continuous
for finite values z > 0 and ¢ > 0. Moreover, it is possible to show that the improper
integrals are convergent for the finite values of the parameters. On the other hand, one
may decide to divide each of the integrals (72) and (73) into two integrals following
the two terms in the square brackets. In the latter case it is possible to show that the
resulting improper integrals are convergent in the Cauchy principal-value sense. The
solutions obtained are expressed in the form of improper integrals. To find their values
for chosen parameters = and ¢ we use the approximate numerical integration.

3.1. Numerical Integration

The solutions obtained so far are expressed in the form of improper integrals. To
find their values we resort to approximate integration by means of the trapezoidal
rule. Because of the trigonometric functions entering the integrals, the first step in the
numerical integration is to find zeros of the integrands. Then, in the second step, values
of the integrals over the spans between subsequent zeros are calculated. Finally, we form
finite seriey which approximate the improper integrals. Following the procedure, let us
consider the free surface elevation (73). Except for a small vicinity of the point r = w,
it is convenient to split the integral into the set of integrals:

2-d-w?

iz, )= (D + Ty + Ja), (76)
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where:
=]
tanh(sh) 1
J1/2=oj p g - cos(sz  rt)ds -
o0 77
tanh(sh) 1 .
J3 = — coswt .1! R - cos(sz)ds.

Let us consider the integrals J,/; in detail. For the assumed values of z and ¢, the zeros
of the integrand are roots of the equation:

2j -1 .
|sz —rt| = N;, N,—:JT-W, j=1,2,3... (78)
For sz — rt > 0, the roots are defined by intersections of the functions:

n(s) = im- t, (79.)

y2j(s) =sz—N;, 820, z>0, N;>0.
For sz — rt < 0, in place of the second of (79), we have:
vai(s)=sz+N;, 7=123... (80)

The functions y3;(s) form a set of straight lines with constant slope equal to z. The
first function (79) is a parabola. The graphical illustration of the solution (79) is shown
in Fig. 4. For sh > 1, we may assume tanh(sh) = 1 and then use the approximate
formula:

vi(s) = £/g- 5. (81)

Fig. 4. Graphical solution of Eq. (78)

The latter case enables us to find closed analytical formulae describing the roots. Having
the roots, say $;,32...,9, ... we may find values of the integrals over each interval
(8i41 — 8i),1 =1,2,3..., and thus, to calculate the improper integral as to be the sum
of the values. In this way, the improper integral is approximated by the series the
terms of which have alternating signs and decrease in absolute value except for a finite
number of the first terms. The similar considerations for the remaining integrals (76)
lead to similar procedure and conclusions.
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3.2. Numerical Example

To illustrate the considerations and procedures developed in the preceding sections,
numerical calculations have been performed. The main aim of the calculations was to
find the free surface elevation generated by the assumed excitation. The calculations
were performed, according to the formula (73) for the following data:

h=0,40m, d+0,01lm, A=0,80 m, ko=2'T"=7,854%

W =4/g- kg 4 tanh(koh) = 8761% (82)

T=2%—40. At =0.717s.

Some of the results obtained in the computations are shown in Figures 5 and 6.
The plots in Fig. 5 show the developing free surface elevation at chosen instants of time
measured from the beginning of motion. Fig. 6 shows the spreading of the elevation
calculated at partially equal time steps.

4. Conclusions

Solutions of the transient and initial problems considered in this paper wrere
obtained by means of analytical formulation and Fourier transforms. The proce-
dure applied to the transient vibrations of the block-fluid system has led to the
integro-differential equation of the block motion. The equation was solved by means of
numerical integration. From the computations it follows that the added mass of fluid,
for the case of surface waves generated by the vibrations, is smaller than the impul-
sive added mass. The latter may be considered as the limiting case which is proper
for higher frequencies of vibrations when the surface waves may be omitted. Following
the computations performed it was possible to calculate an approximate envelope of
the solution from which a substitute parameter of an apparent viscous damping may
be obtained. It can be seen that for the considered case of rigid block with a single
degree of freedom, the parameter substitutes the damping resulting from transmission
of energy by the generated waves fairly well. For the case of initial generation of water
waves with prescribed form excitation, the final solution for the free surface elevation
is expressed in the form of an improper integral which needs approximate integration.
Computation of the improper integrals entering the solutions obtained in this paper
seems to be the main difficulty in application of the method proposed to more compli-
cated cases for which a better way may be a discrete formulation. In the latter case,
however, we badly need a rigorous analytical solution of a relevant simpler problem
which may serve as the test of verification of the discrete methods. Thus, the method
proposed in this paper may be useful in analysis of such phenomena.
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Fig. 5. The free surface elevation at chosen instants of time



84 K. SZMIDT, B. HEDZIELSKI, M. SLIWINSKI

-l[x,nlr.m]

2 » A=40cm
w=12413 8"

x [cm]

Fig. 6. Spreading of the free-surface elevation within the first period of oscilation
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Summary

The paper deals with transient vibrations of a rigid block and initial generation of
waves in a layer of fluid of constant depth. The considerations are confined to the two-
dimensional linearized problem of free vibrations of the block-fluid system starting from
rest. Fourier transform technique is applied to solve the initial problems mentioned.
Solution of the problems leads to improper integrals which need approximate numerical
integrations. The considerations performed and formulae obtained are illustrated by
numerical examples. The method proposed seems to be useful in applications especially
in cases when the domain of solution is relatively regular.

Streszczenie

Praca zajmuje si¢ zagadnieniem drgan tranzytywnych sztywnego bloku i genera-
cja fal w padmie cieczy o stalej glebokosci. Rozwazania ograniczono do dwuwymia-
rowego zlinearyzowanego problemu drgaii swobodnych ukladu blok—ciecz rozpoczyna-
jacego ruch ze stanu spokoju. Do rozwigzania tych zagadnien zastosowano metode
transformacji Fouriera. Rozwiazanie problemu prowadzi do calek niewladciwych, ktére
wymagaja przyblizZonego numerycznego calkowania. Rozwiazania i otrzymane wyniki
sa zilustrowane przykladami numerycznymi. Zaproponowana metoda wydaje sie byc
wygodna w zastosowaniach szczegdlnie wéwczas, gdy obszar rozwiazania jest wzglednie
regularny.



