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Part 1
Modelling turbulent boundary layer in nonlinear
wave motion

Notation
¢ — wave celerity;
g - acceleration of gravity;
h - mean water depth;
H - wave height;
k, — Nikuradse’s roughness parameter;
L - wave length;
P - pressure;
t - time;
T - wave period;
u — instantaneous velocity;
u. — current velocity;
ug — defect velocity;
uy — friction velocity;
iy — equivalent maximum friction velocity;
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us. — root mean square friction velocity;
U - free stream velocity;

We — induced vertical velocity at the top of boundary layer;

z - horizontal coordinate;
z — vertical coordinate:
29 - theoretical bed level;

zmax— validity limit of boundary layer equation of motion;
é - boundary layer thickness;

6, - boundary layer thickness at moment corresponding to maximum free
stream velocity;

82 - boundary layer thickness at moment corresponding to minimum free
stream velocity;

£ - von Karman constant;

vy - eddy viscosity;

p — water density;

T - shear stress;

To — bottom shear stress;

7. — shear stress averaged over time; region;
w -~ angular frequency.

1. Introduction

Bottom shear stress due to motion ot water is commonly assumed to be the chief
cause of the movement of sea bed grains. Because the concentration of sediment is
biggest in the sea bed boundary layer, the sediment transport most intensive there.
Therefore an accurate description of velocity and friction distributions in time and
space, and especially a precise determination of their qualitative and quantitative cha-
racteristics is of crucial importance within the field of coastal engineering. The problem
is extremely sophisticated because of nonlinear interactions between flow and sea bed.

One may distinguish at least three major types of interactions for for bottom shear
stress:

e influence of bed roughness on velocity distribution in boundary layer

e interaction of suspended sediment and velocity in the boundary layer where su-
spension of sediment is shaped by bottom friction and in turn damps the turbu-
lence inside the boundary layer affecting velocity distributions

¢ nonlinear interaction of waves and currents.
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The above intercorrelations are partly reflected in the distribution of eddy viscosity
vy (Kaczmarek & Ostrowski 1989, 1991):

v(z) = itz for %stéiﬂ-.lr% :
V1(2)=Nﬁj(§“‘+£'-) for z>§m+-'5'- (1)

The formulae (1) are rooted in the hypothesis of Kajiura (1968) and the simplifi-
cation of Brevik (1981) for rough turbulent boundary layer. Only turbulent regime of
motion is considered here.

Within the above sheme the friction expressed by the friction velocity u; is coupled
with velocity distributions. The quantity i, is an equivalent (characteristic) friction
velocity dependent on uj(wt). The scheme implies that eddy viscosity distribution
depends on roughness coefficient k,, the parameter §,, associated with the boundary
layer thickness and correlated with friction velocity, and the von Karman constant x
assumed as 0.4 for clear water (decreasing in the pesence of suspended sediment.

Attention is focused only on the third of the specified interactions. One can distin-
guish four cases:

e linear wave over rough bed
¢ linear wave superimposed on current
¢ nonlinear wave over rough bed

e nonlinear wave superimposed on current.

The solution of the equation of motion in boundary layer for the first case has
been proposed by Kaczmarek & Ostrowski (1989) and Kaczmarek (1990) who used
the distribution (1). The second case has been recently discussed by Kaczmarek &
Ostrowski (1991). Present paper deals with nonlinearities linked to wave motion only,
while an approach concerning the interaction of nonlinear waves and currents will be
presented in Part 2.

The relationships in boundary layer due to nonlinear wave are discussed in Section
2 of the current paper and the solution of equation of motion for asymmetric wave is
provided in Section 3. Roughness k, and parameter k£ are assumed to be known and
constant.

2. Identification of nonlinearities bound with wave motion
2.1. Mathematical description of wave and boundary layer

Wave theories are based on numerous simplifying assumptions such as potential
motion, inviscid water, negléct of Coriolis force, etc.

Solutions provide potential functions of wave motion ®(z, z,t). The potential func-
tion for Stokes 2nd order theory is given as:
Hg cosh[k(h + z)]
2  cosh( (kh)
3 cosh[2k(h + 2)]
—pgr— " T A
327 " sinh*(kh)

®(z,z2,1) sin(kz — wt) —

sin[2(kz — wt)) (2)
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The first term of the above formula is a solution to linear wave theory while the
second term (nonlinear) expresses the dependence of potential function on a square of
wave height (usually much smaller).

The approximations implied by the Stokes theory are particularly useful for the
cases of short-period waves and small Ursell parameter U = %(£)? < 75. However, for
shallow water waves Stokes 2nd approximation there often appears an extra crest at
wave trough. For such cases the use of higher order approximations, for instance the
theory of Borgman and Chappelear, is recommended. In general one may find out that
for the value of Ursell parameter greater than 40 it is necessary to take advantage of
Stokes approximation of order higher than 2.

Incorporating Prandtl’s postulates one obtains the following equations describing
turbulent motion in boundary layer:

% + 6_w = 0
d a Ba:a = 7, o, 6
iy TR AN
& Tt g = g g l) (3)
10p _OU 8 ,., ,6 0
o~ o Taal )W)
in which U, W denote components of orbital velocity at the upper limit of boundary

layer.

The system of Equations (3) is a system of nonlinear equations because of the
presence of terms 2 (u?), Z(uw), £(UW), Z(U?), among which the term 2(U?) is
associated with so called radiation stress (Longuet-Higgins & Stewart 1964), while the
term 2(UW) describes vertical momentum transfer caused by orbital motion.

In linear approximation, the term (UW), averaged over wave period, vanishes auto-
matically in the entire the region of potential motion. Moreover, the correlation U? is
neglected a priori. Hence the motion of water in boundary layer in linear approximation
is governed by the following equation:

E-e2 ()
t 0z \ 0z

Kaczmarek & Ostrowski (1989, 1991) proposed a solution of Eq. (4) with distribu-
tions of 1 according to (1).

Within nonlinear approximation the term (UW), averaged over wave period, being
different from zero in the region of potential motion, vanishes at the limit of boundary
layer, similarly as for the linear approximation. Thus the equation of motion in the
boundary layer has the form:

du ou oU U@U a du
i a‘*a—(a_) (5)
Assuming that the velocity u does not depend on z, one may neglect the convective
terms and simultaneously take the nonlinearity into account by expressing the velocities
of bottom oscillations U(t) in potential motion by nonlinear Stokes approximation. In
this way the asymmetry of wave with respect to still water level is considered. Such an

approach is presented in the next section.
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2.2. Proposed description of friction in boundary layer due to nonlinear
wave

Although a lot of solutions of boundary layer problem for and sinusoidal waves
have been provided (Jonsson & Carlsen 1976, Brevik 1981, Fredsoe 1981, Kaczmarek
& Ostrowski 1989) no vigorous mathematical description of the turbulent boundary
layer is available for a wave form asymmetric with respect to still water level.

Equation (4) can be rewritten as:

107
- (6)

In order to define uy(t) the assumptions of Fredsoe’s model (1981) formulated for
sinusoidal wave and the suggestion of Fredsoe, Andersen & Silberg (1985) concerning

the possibility of adaptation of the model for nonlinear wave case have been employed.
Eq. (6) after integration reads:

a
?ﬁ(u—U)=

T i 7]
W - LE l [ _
_F— up = / 8t(u u)dz (7)
i

The assumption is made that the velocity profile in the boundary layer is described
by the logarithmic function:
u 1 In 30z

uy K&k,

(8)

where the z axis is directed upwards from the bottom.
The boundary condition at the upper limit of the boundary layer reads u = U at
z =6+ %. On the strength of Equation (8) one has:

k

=25l —1) (9)
in which
Uk
2= ; (10)

After rearranging the integral on the right hand side of Eq. (7) one obtains:
dU  1du;k,
Tt aw
If one takes the derivative of Eq. (10):
d21 _ Z dUu F41 du;

—uf=— e(z1 —1) +1] (11)

®T & wd (12)
then one obtains the differential equation:
dz 30x3U (wt) z(em —2—1)1 dU (13)

dwt) ~ kwer(z—1)+1  en(z—1)+1 U dwi)
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It is necessary to point out that the solution of Eq. (13) bases on an assumption that
boundary layer develops anew every time the flow reverses. This implies the neglect of
memory effects.

In our computations, the velocity at the upper limit of boundary layer is given by
the second Stokes approximation:

H
U(wt) = %ﬁ%&—)m(m) + g(%)’%ml(?ﬁm(zm) (14)

Additionally the computations have encompassed the third Stokes approximation
in the approach of Borgman and Chappelear:

U(wt) = F cos(wt) + F; cos(2wt) + F; cos(3wt) (15)

The coefficients Fy, F3, F5 are determined by iterative solution of the system of
nonlinear equation given by Voogt (1979).

Equation (13) must be solved numerically. Because of the initial condition: § =0
for t =t (to corresponds to the moment U(wto) = 0), the initial condition concerning
the 'variable 2z; reads: z; = 0 for t = t. It leads to division by zero on the right hand
side of Eq. (13). Therefore, for the first program step, a simplified form of Eq. (13) has
been assumed - valid for times ¢ not much varying from to:

dz, 60x%U(to + wt) _z
d(wt) kwz? wit

(16)

in which U(2o + wt) = Upn,wt.
The solution of Eq. (16) reads:

’6 302U,
z2 = Y g . :.w (Ut)i (17)

The solution of Eq. (13) has been obtained by the Runge-Kutta second-order me-
thod. As a result, the function 2;(t) has been obtained and the time distributions of
friction velocity us(t) and boundary layer thickness §(¢) have been calculated thereafter
on the basis of Equations (9) and (10).

The computations have been carried out for the parameters of a typical wave ge-
nerated in laboratory: A = 12.5 cm, H =5 cm, T =1 s, k, = 2 mm. Temporal distri-
butions of the input U(wt), the function z(wt), friction velocity uy(wt) and boundary
layer thickness §(wt) for the cases of 2nd and 3rd Stokes approximations are depicted
in Fig. 1. The influence of the asymmetry of bottom velocity oscillations on friction
velocity uy and turbulent boundary layer thickness § is visible. The asymmetry of bot-
tom velocity oscillations brings about non-uniform growth of boundary layer thickness
in crest and trough phases, and accordingly non-uniform friction.
 The presented computational procedure permits the determination of the characte-
ristics of bottom friction (6 and u;) practically for any input U(t). The paper presents
the application of the method for 2nd and 3rd Stokes approximation.
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Fig. 1. U(wt), z1(wt), ug(wt), 6(wt) for 2nd (left side) and 3rd (right side) Stokes

approximation
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The following relationship is valid for the analysed two cases, as for any other
polyharmonic input:

T
/U(i}dt = 0 (18)

i.e. the resultant water velocity at the upper limit of the boundary layer is zero.
Making use of the definition of friction velocity:

W=J§ (19)

one may determine the mean shear stress within wave period T':

T
re= g [ o lu® lusto)at (20)

and the corresponding mean friction velocity:

s 2 21
Mife » (21)

On the basis of computations one finds out that the mean friction velocity for an
arbitrary nonlinear input is a positive value. In analysed cases, mean shear stress uf,c
has represented about 5% of maximum shear stress u%,,,,, where ujnq, = maz[uy(t)].

The above statement is very important as it leads to a conclusion that the resultant
absolute shear stress in the crest phase is greater than in the trough phase. Hence the
mean shear stress pu%, is induced as a result of bottom oscillations asymmetry. This
mean shear stress reflects the existence of a certain resultant current inside boundary
layer, directed accordingly to wave propagation.

The research and mathematical description of this current has not been a subject
of analysis in the world literature till now. Recently a very interesting experimen-
tal study on asymmetry effects in oscillatory boundary layers has been reported by
Sumer, Fredsoe & Laursen (1991). The study deals with the non-uniform boundary
layers developing over a bed with changes in the streamwise direction of flow in a
converging—diverging channel (Fig. 2).

The free stream flow was a purely oscillating one with a sinusoidal velocity va-
riation. Figure 3a illustrates the time evolution of the mean bed shear stress over one
period of the flow. For comparison, the figure includes the result obtained for a uniform
oscillatory boundary layer flow (8 = 0°). The figure demonstrates that the shear stress
increases in the convergent half-period and decreases in the divergent half-period com-
pared to the values of the uniform oscillatory boundary layer flow. This indicates that
the period-averaged bed shear stress 75 is non—zero in the case of convergent—divergent
channel. As seen from the figure, this non-zero period-averaged shear stress is directed
towards the converging direction. The latter implies that there is a constant streaming
of fluid near the wall towards the converging end of the channel. Figure 3b gives the
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Fig. 2. Definition sketch. Oscillatory flow in convergent-divergent channel (Sumer et

al. 1991)
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Fig. 3. Time evolution of mean shear stress (a) and boundary layer thickness (b)
(Sumer et al. 1991)

boundary layer thickness plotted as a function of wt. The boundary layer is rather thick
in the divergent half-period, while the opposite is true for the convergent half-period
of the flow.

All earlier attempts of theoretical description of the resultant current induced inside
a boundary layer have led to the identification of wave-induced mass flux caused by
the displacement in a boundary layer, see for example Hedegaard & Fredsoe (1984).
This flux arises because a phase shift exists between the horizontal and vertical flow
velocities at the top of the boundary layer in non-uniform water waves, so the term
UW does not vanish. As shown by Longuet-Higgins (1953) the spatial and temporal
gradients in the velocity deficit of the wave boundary layer creates a vertical velocity,
which is small compared with the orbital velocities. This additional vertical velocity
attains the value w,, outside the wave boundary layer, while it decreases through the
boundary layer to be zero at the bed. This effect will be discussed in.the next section.
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2.3. Discussion of vertical momentum transfer induced by organized wave
motion

For the laminar boundary layer described by the equation:
8o 8%

in which
du Ow du
=% %0 @)
the solution (Longuet-Higgins 1953) is expressed by the relationship:
H -p=' !
u= —w?cosech(kh) - e cos(kz — wt + f2') (24)
where z/ = z + h is a distance from the bottom and
w1
= (—)%
B=(2) (29)

The non—zero vertical velocity results from continuity equation. For the laminar
case this velocity is given by the following formula:

w= 2‘%wgb’;%cosech(kh)[e“g"(coa(kz —wt+p2) +
+ sin(kz — wt + B2)] — sin(kz — wt) — cos(kz — wt) (26)

where R, = -ir

The existence of this velocity indicates that an additional mean (within wave period)
shear stress T is generated inside the boundary layer. This stress attains the maximum
value at the upper limit of the layer. It causes the disturbances in the region of potential
flow, because — on the basis of considerations conducted in Section 2.1 — there is no
vertical momentum exchange represented by the term @w in linear wave motion. The
approach of Longuet-Higgins implies that the form of vertical velocity w induced by
the vorticity depends on the linear solution (24). Moreover it can be easily shown
that the shear stress induced outside the boundary layer is oriented in the direction
of wave propagation and the velocity is smaller by order of magnitude than its linear
counterpart.

In the case of turbulent motion, the determination of the additional shear stress
generated inside the boundary layer requires, as in laminar motion, the knowledge
of the linear solution of Eq. (4). This solution depends on the distribution of eddy
viscosity v;.

Using the continuity equation and assuming:

a 10

P "l (27)
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one may determine the additional vertical velocity w., outside the boundary layer from
the formula:

o ¥ 1 #5
wm=-5;j(u-U)dz=; j 51— U)dz (28)
& i

After taking into account Eq. (6) integrated over the boundary layer thickness,

Eq. (28) transforms into the form:
= _urlwl (29)
cp c

The wave boundary layer thus acts as a small periodic disturbance which travels
along the bed with the phase velocity ¢ of the wave motion. Such a travelling di-
sturbance will generate a surface wave with increasing wave height in the direction of
propagation. This developing wave causes a reduction of the total wave height in the
z - direction, when it is combined with the basic wave.

Recently Deigaard & Fredsoe (1989) have explained the physical mechanism which
extracts the energy from the outer potential flow and transports it to the wave boundary
layer, where it is converted to turbulence and heat. Following them let us consider
the progressive, linear shallow-water waves. The sea bed is horizontal and the only
deformation of the waves is assumed to be caused by the energy dissipation in the
wave boundary layer. The wave condition is steady and the only variation in wave
height is in the direction of propagation.

The velocity wo, is associated with an additional water surface elevation of:

=‘/wmdt = —/%u;h;ldt (30)

Longuet-Higgins (1953) used the displacement induced vertical velocity to explain
the phenomenon of streaming. It is interesting to note that the perturbation (* of the
water surface is not in phase with the horizontal orbital velocity U.

¢* gives rise to an additional horizontal pressure gradient 8p*/dz, which for linear
shallow-water waves is given by:

op ¢ pgd¢ _ pg |
oz Moz~ " cot e

This pressure gradient carries out a resulting work on the horizontal orbital velocity
of the wave motion. The time-averaged rate of work per unit bed area is given by:

(31)

W = _T a” 2 ydt = —hﬁuf]uflU = —pusfus[U (32)
0

which is of exactly the same magnitude as the time-averaged rate of energy dissipation
per unit area of the bed E in the wave boundary layer defined as:

T
1 I,
= T—!Urdt = pUuj|uy| (33)
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The energy dissipated in the wave boundary layer is thus extracted from the outer
wave motion through the work done against the pressure gradient associated with the
additional surface elevation, caused by the displacement in the wave boundary layer.

The extraction of energy given by Eq. (32) is evenly distributed over the depth. As
the dissipation takes place in the bottom boundary layer, energy must be transferred
from the outer flow to the boundary layer. The downward energy transport is secu-
red by the work done by the hydrostatic pressure on the vertical flow velocity. This
time-averaged rate is calculated as:

o [ 20¢ z20¢
W——PQ(C+C)(hat+woo) = ~po(Cum + 25 (34
_%I and we.C* (= ) are zero as the waves are periodic. Hereby Eq. (34) becomes:
_ '“fl“fl z0C [ ugluy|
W = pg tegya ] — o & _
_ o cugfug | z[d ugluy| uyluy|
= pg¢ 4 poZ | = (¢ [ M) - (22 (35)

cus|u ——
- - ) - -
which at the bed is equal to the work found in Eq. (32), i.e. all the energy extracted
from the wave motion is transferred to the wave boundary layer.

The above considerations reveal that the nonlinearities bound with the generation
of an additional vertical velocity w., at the top of boundary layer i.e. the nonlinearities
linked with the terms UW are closely associated with the dissipation of wave energy.
Thus if the energy dissipation is neglected one may skip the additional stresses gene-
rated at the top of the boundary layer (a current induced by these stresses does not
exist).

Considering the dissipative waves one should provide a solution for perturbated
wave conditions. Although Deigaard & Fredsoe (1989) have obtained a solution using
the perturbation analysis, the problem is still unsolved for the situation of zero mean
discharge. For such a situation the problem reduces to the determination of the mean
current distribution in the outer region of flow.

Finally it is worthwhile pointing out that the stress Ty equals zero at the bottom
and reaches the maximum value at the top of boundary layer while the effects of wave
asymmetry play the key role very close to the bottom.

The above conclusions will be very helpful for formulation of a model in Section 3.

3. Velocity and shear stress in nonlinear wave boundary
layer

3.1. Theoretical basis of present model

The first theoretical attempt of description of bottom boundary layer under nonli-
near wave motion was presented by Tanaka 1989. He modified and extended the stream
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function theory proposed by Dean for rotational and nonlinear waves. Dean’s stream
function theory was modified to include the effect of the turbulent viscosity. Although
that approach provides the instantaneous velocity profiles for the case of nonlinear
wave, the induced mean flow in the boundary layer has not been considered. Con-
trary to the recalled approach, the Authors propose a theoretical solution which deals
with the nonlinear effects represented by the additional current generated inside the
boundary layer.

Within the current approach, the nonlinearity of the phenomenon is represented
by the asymmetry of wave input (oscillatory horizontal velocity U(t) at the upper
limit of boundary layer) described by 2nd and 3rd Stokes approximation. The tem-
poral distributions of friction velocity uy(wt) and boundary layer thickness §(wt) are
computed with the procedure presented in Section 2.2. Then the equation of motion
(4) is solved numerically and the velocity u(z,t) inside boundary layer is determined
for z = 2) — zmaz and t = to — (to + T'), where 20 = k,/30 and #o corresponds to the
instant of U(t) = 0. The upper limit zp,, has been estimated as zp4; = 26, + k,/30
(Kaczmarek, Ostrowski 1989), and §,, = maz(é,,6;) is the mean boundary layer thick-
ness, where 6; and §; are the boundary layer thicknesses at the times corresponding to
maximum and minimum oscillatory input, respectively. In the end, the mean current
distribution u, is calculated and superimposed on the instantaneous velocity profiles.

Eq. (4) is solved numerically by an implicit method involving the Crank — Nicholson
scheme. Introducing the defect velocity ua(z,t) = u(z,t) — U(t) one has:

2 2 (w%) (36)
The following approximate initial condition is assumed:
ud(z,t0) =0 (37)
and the boundary conditions are:
u4(zo,wt) = —U(wt) (38)
Ud(Zmaz,wt) = 0 (39)

Because the approximate initial condition (37) has been involved, the computations
have had to cover the time corresponding to a few wave periods until the compatibility
between ug4(z,to + N - T') and ug[z,t0 + (N + 1) - T]. The number of required runs N
depends on wave parameters and is three to five.

As a result of computations by the procedure presented in Section 2.2, an additional
mean shear stress 7. and corresponding friction velocity us. appear. Using the extrema
in friction velocity distribution (Fig. 1) the equivalent maximum friction velocity iy
(employed in the eddy viscosity distribution (1)) is defined as:

iy = [0.5(u2,,,, + udlT (40a)

Alternatively, one may assume:
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tiy = maz(Usmaz, |t fmin|) (40b)

cf. Kaczmarek, Ostrowski (1991).

The assumption has been made that in a certain limited region in the close vicinity
of the bed the shear stress 7. is constant. This assumption is very realistic but the
thickness of the region is questionable. The choice is rather arbitrary. The Authors
propose the upper limit of this region as the ordinate corresponding to the level at which
the mean of maximum and minimum velocity profiles reaches the free stream velocity.
In accordance with Jonsson & Carlsen (1976), 6,,/2 + k,/30 is the most consistent
measure (see discussion Kaczmarek, Ostrowski 1991).

Basing on Boussinesq’s hypothesis, eddy viscosity distribution (1) and the definition
of friction velocity (21) one may formulate the following equation:

. du.
wikgz— = u}, (41)

in the range < k,/30;6,,/4 + k,/30 > and

o bpm k, \ du. .2
Kuyg (-4— + ﬁ) Ti; = ufc (42)
in the range (6, /4 + k,/30; 6, /2 + k,/30 >.
In Eqs. (41) and (42) the quantity u, is a mean current resulting from the existence
of the additional friction pu3,. Integrating Equations (41), (42) and taking advantage
of the condition u.(z = k,/30) = 0 one comes up with the formulae:

uf, z
uc(z) = Hﬁf lﬂm (43)
in the range < k,/30;6,./4 + k,/30 > and
o, 5 6m/8+ kuf30
wla) = (.5,,. 7T R ()

in the range (6m/4 + k,/30;6,,/2 + k,/30 >.

In the range (6, /2 + k,/30; 2paz), the mean current distribution decreases linearly
upwards on the assumption that the boundary conditions at the top of boundary
layer with respect to continuity of velocity must be satisfied. The velocity at z =
6m/4 + k,/30 is determined by the formula (44) while the velocity at z = 2., must
be given explicitly. In the presented simplified model the latter is assumed as zero, but
one should be aware of the fact that thus the vertical momentum transfer represented
by the term ¥ is neglected (cf. Section 2.3). The effect of Tw term will be discussed
with respect to the case of wave and current interaction in Part 2 of the paper.

Hence the mean current velocity in the layer (6m/2 + k4/30; 20z ) reads:

2
_ Y Om/4+ k,/30 _ 2=6m/2—k,/30
u.(z) pry (In——k./ao +1 156 (45)
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After superimposing the mean current velocity distribution on all the instantaneous
velocity profiles the bottom shear stress may be determined. Integrating the equation
of motion:

Oug 107

e 46
ot poz (46)
over a certain height Az
S +4z §&+As
Oug or
—dz —d 47
] ot p A F )
3%
the bottom shear stress formula is obtained:
!ﬂ-+Az
Ty = Thyiap =P j ey, (48)

in which the first right hand term is calculated accordingly to Eq. (1) and Boussinesq’s
hypothesis:

O(uq + u.)

A
T;&-I-Az = pRUf ("3'6 + AZ) 9z (49)

z= "ﬂ-+Az

whereas the second right hand term of (48) is expressed by Simpson’s formula for
numerical integration of the function y(z) with a step Az in a range < a;b > (for an
even number n of intervals):

b
1
jyda: ~ EAI('% +4y1 + 2y2 + 4ys + .. + 2Yn-2 + 4Yn-1 + ¥n) (50)
a

The quantity Az should equal the total thickness of validity of Eq. (46) i.e. 26,,.
In fact it has been limited to small value corresponding to the region in which the
computed velocity profiles fit the measured ones best.

3.2. Comparison between theory and measurements

The laboratory experiment of van Doorn and Godefroy (1978) has been considered.
The measurements were carried out in an open glass-walled wave flume with horizontal
bottom, 30 m long, 0.5 m wide, with the net length for the waves in the flume (between
wave board and wave damper) of about 26 m. The tests including velocity measure-
ments were carried out under the following conditions: still water depth A = 0.3 m,
wave period T = 2 s, wave height H = 0.12 m. Conditions for a turbulent wave bo-
undary layer were created by artificial roughness elements fixed to the bottom in the
measuring section.

For the comparison, the wave input has been assumed at first as 3rd Stokes appro-
ximation given by the theory of Borgman and Chappelear, Fig. 4.
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Fig. 4. Measured (o) and calculated (-) wave input U(wt)

The measurements have not revealed any mean current velocity near the top of
boundary layer i.e. no dissipative effects have existed. This is confirmed by the regi-
strations of free surface elevation ((t) which have shown an average negative value of
2 + 3 mm. The missing water has been stored in front of the wave train resulting in
set-down and a small return current in the outer region of the flow, the presence of
which has been found out by van Doorn & Godefroy (1978). The mathematical de-
scription of such a type of currents has been proposed by Kaczmarek & Szmytkiewicz
(1991).

Before comparison, two values should be determined, the theoretical bed level and
Nikuradse’s equivalent roughness parameter k, (= 30z). In case of the flow over a
rough bottom, it has been empirically found that the theoretical bed level is located
somewhat lower than the top of the roughness element, e.g. Jonsson & Carlsen (1976).
However, no method is available to estimate the displacement of the theoretical bed
level and the height of the equivalent roughness under an oscillatory motion. The
roughness parameter has been recommended to be determined experimentally by fitting
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the measured velocity profile near the bottom to a logarithmic profile. In this study
the quantity k, has been estimated as 3.5 cm.

With the use of the procedure presented in Section 2.2 the boundary layer thickness
é(wt) and the bottom friction velocity uy(wt) have been computed (method a). The
friction velocity has also been determined by the use of Eqs. (48), (49), (50) and (19)
(method b). The results are depicted in Fig. 5.
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Fig. 5. Temporal distributions of §(wt) (- - -), us(wt): method a (- -), method & (-) for
ity by Eq. (40a) (left) and Eq. (40b) (right)
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Both methods (a) and (b) provide nearly the same maximum and minimum values
of ug(wt). The most important advantage of method (b) is that it provides a phase shift
between us(wt) and U(wt) of order not exceeding 30° (in the phase of wave trough)
and about 0° (in the phase corresponding to transition from crest to trough when a
small instantaneous velocity at the bottom acts against the mean current).

The mean current velocity profile has been calculated on the basis of the formulae
(43), (44), (45) and is plotted together with measured values in Fig. 6.

The calculated mean current velocity seems to be a little bit overestimated as the
steepness of assumed wave input is much greater than the steepness of the measured
one.

The mean velocity has been superimposed on the instantaneous velocity profiles
obtained due to the solution of equation of motion (36). Because of a misfit between
measured and theoretically defined wave inputs U(wt), especially in the phase of wave
trough (cf. Fig. 4), the comparison of measured and computed values has been perfor-
med for the phases of wave input compatibility. Thus a time sector corresponding to
the middle of a wave trough has been out of the analysis. The instantaneous velocity
profiles are given in Fig. 7. ‘

The agreement is satisfactory, however some differences exist. Although the results
are similar for iy deiined by Eqs. (40a) and (40b), better ones have been obtained
for (40b) version in the case of analysed experimental data. Equation (40b) has been
previously used for the case of sinusoidal wave and current interaction, Kaczmarek &
Ostrowski (1991), and the comparison with available laboratory data has been quite
good.

4. Conclusions

The problem of turbulent boundary layer under nonlinear wave has been investiga-
ted. Two major types of nonlinearities have been identified:

* nonlinearity of wave expressed by the asymmetry of free stream velocity

¢ nonlinearity associated with the secondary water motion caused by displacement
in the boundary layer. ’

The free stream asymmetry causes non-uniform time development of boundary
layer thickness and friction velocity resulting in the mean bottom shear stress. This
non-zero period-averaged shear stress is directed with wave. Hence there is a constant
streaming of water near the bed in the same direction.

The second kind of nonlinearity is represented by UW term. It i revealed that the
ponlinearities bound with the generation of an additional vertical velocity we, at the
top of boundary layer are closely associated with the dissipation of wave energy. As far
as the energy dissipation in the boundary layer is neglected one may skip the additional
stresses generated at the top of boundary layer (linked with the terms Uw,.. In any
other case, for dissipative waves, the additional current is induced.
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Fig. 7. Measured (e) and postdicted (-) instantaneous velocity distributions for uf by
Eq. (40a) (left) and Eq. (40b) (right)

The mathematical model of boundary layer for nonlinear wave input has been
proposed. It enables one to calculate the instantaneous and mean current velocity
profiles and temporal distributions of bottom shear stress.

The results of computations are compared with laboratory measurements of van
Doorn & Godefroy (1978). The agreement seems to be satisfactory.
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Summary

The mathematical model of boundary layer for nonlinear wave input has been
proposed. It enables one to calculate the instantaneous and mean current velocity
profiles and temporal distribution of bottom shear stress.

The results of computations are compared with laboratory measurements of van
Doorn & Godefroy (1978). The agreement seems to be satisfactory.

Streszczenie
Dynamika falowo — pragdowej warstwy przyéciennej
Czeéé 1
Modelowanie turbulentnej warstwy przyiciennej w warunkach falowania
nieliniowego

W pracy przebadano zachowanie si¢ turbulentnej warstwy przysciennej w warun-
kach falowania nieliniowego. Przedstawiono model obliczajacy chwilowe i érednie roz-
klady predkoéci oraz chwilowe rozklady naprezen stycznych w warstwie przysciennej z
uwzglednieniem efektéw nieliniowosci falowania. Wyniki obliczeri poréwnano z danymi
laboratoryjnymi van Doorna i Godefroy (1978) otrzymujac dobra zgodnoéé.




