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Scale effect in pile model tests

1. Introduction

The behaviour of piles under vertical load is one of the most complicated problems
in soil mechanics, still being the topic of a number of model and in situ investigations or
theoretical considerations. This is due to the fact that many phenomena occuring in the
course of load transfering from pile into soil remain unexplained by existing theories.
It particularly refers to interaction between pile shaft and soil. Shaft resistance of pile
depends on a number of factors, among others on the displacements of the soil at the
pile shaft in radial (horizontal) and axial (vertical) directions. Depending on the type
of pile, way of its installation, loading direction (compression, tension) the effective
normal (horizontal) stresses at the pile shaft can vary among the active and passive
limit.

Very important problem in the analysis of the shaft resistance is dilatancy pheno-
mena in a shear zone along the pile affecting the magnitude of skin friction. During
loading of pile, a thin shear zone of soil along pile shaft is formed where soil dilates.
The thickness of shear zone depends on roughness of pile surface, soil grains diameter,
soil compaction and the boundary conditions of the whole system. The dilatancy is
constrained by the mass of the surrounding soil, which causes additional increase of
normal stresses. The dilatancy constraint causes thus a scale effect. As it is observed
in the tests, the smaller piles for the same soil produced larger values of unit skin resi-
stance and lateral effective stresses. The bigger pile model, the smaller-the influence of
dilatancy constraint on the stresses. Generally scale makes difficulty in the interpreta-
tion and transfering of the model test results directly on to fullscale (real conditions).
The investigation of the shear zone thickness and the scale effects is not possible with
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the aid of many constitutive laws which were laid down in the frame of nonpolar (clas-
sical) continuum, because they do not have any characteristic length. Therefore it is
suitable to use another approach for description the behaviour of pile in soil. We made
use of a Cosserat approach proposed by Miihlhaus (1987) which enables to describe
the localization of deformation in granular material (shear zones) and the behaviour
of granular particles by taking into consideration not only slip but also rotation among
individual grains. The characteristic length in the Miihlhaus law is expressed by the
mean grain size.

The aim of this paper is to analyse unit shaft resistance and the scale effect in
model tests of pile in the cohesionless soil using finite element method and the Cosserat
approach, what is novel in such investigations.

First a general review of pile investigations and obtained different relationship on
the basis of Tejchman’s model and full scale tests confirmed by many others researches
is presented. Next basic principles of the use of finite element method and Cosserat
approach for the analysis of pile bearing capacity (shaft resistance) is described. The
examples of numerical calculations are given and comparison of these results with the
results of performed model tests is discussed.

2. Analysis of load transfer from pile into soil

In the following figures the relationships concerning the load transfer from pile into
non-cohesive soil are presented on the basis of own model and field tests (carried out
by A. Tejchman). These results are confirmed by numerous aliens researches.

In Fig. 1 a general dependence of unit shaft resistance on pile diameter D for
compression and tension pile is presented. A distinct scale effect is observed for model
piles, particularly for compression loading and compacted soil. For piles with diameter
D > 30 cm the dependence on D is relatively small, for larger diameter can slightly
increase or decrease. Fig. 2, 3 and 4 show additionally some real results from model
tests (Gwizdala 1977, Wernick 1978) and from field investigation (Spang 1972).

The dependence of unit shaft resistance 7,, on pile penetration depth is shown in
Fig. 5. As it is known the values of 7¢, increase nonlinearly with increase of depth and
tends to constant value below so called critical depth. The value of 7%, for tension piles
is practically constant, independent on depth.

In the investigations and in the practice, a significant differences between shaft
resistance of pile in compression and in tension are observed. In Fig. 6 such relationship
is shown. This fact is caused by different state of earth pressure for both cases, what
is illustrated in Fig. 7 by means of K coefficient.

As a supplement concerning the analysis of pile behaviour, in the Fig. 8, the de-
pendence of unit base resistance o, of pile diameter is presented. With increasing of
pile diameter D, the decreasing of o, is observed. Fig. 9 shows values of a,, for different
D obtained from model tests by Gwizdala (1977), Fig. 10 from field tests by Spang
(1972).
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Fig. 11. Investigations of dependences of unit base resistance and shaft friction on pile
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At the end of this short illustrated review of pile behaviour in the soil is worth
to remember the classical investigation results after Kérisel (1962), which demonstrate
also clearly scale effects (Fig. 11).

3. Description and model test results

Some of the model test results are presented here to compare with numerical calcu-
lations, carried out on the basis of assumed Cosserat approach. The tests were carried
out in dry uniform sand (dso = 0.24 mm). The model set-up consisted of the following
main elements: sand container 100 x 100 x 100 cm, sand laying machinery, steel frame
with loading arrangement and tracks on which sand laying machinery and main frame
could be moved. Depending on the heights of fall for the sand the following four relative
densities were obtained:

Table 1
Ip e . ¢
[kN/m?] | (triaxial tests)
1(0.430 [ 0.705 | 15.54 31.2°
2(0.595 | 0.646 | 16.09 33.2°
310.740 | 0.594 | 16.62 35.7°
410.865|0.549 | 17.10 38.8°

Ip - density index

e — void ratio

4 - unit weight

¢ - angle of internal friction

The pile model was a brass pipe with an outer diameter of 50 mm and a total
length of 850 mm. Sand was glued to the outer pile surface to provide a roughness.
The essential part of the model was the cell containing strain gauges placed at the pile
base to measure point load, and the mechanical dynamometer mounted on the pile top
to measure total load on the pile. Hence it was possible to distribute the total load into
point and shaft resistances. Pile model was pressed-in sand to a depth of 50 cm and
then loaded to failure. As well as compression and tension tests were performed. An
example of load-settlement curve obtained from test illustrates Fig. 12 (dense sand).

Since the comparative calculations were carried out only for one relative density of
sand, below are listed (Table 2) only ultimate forces for Ip = 0.865 (as mean value
from three experiments), Tejchman A. (1971).
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Fig. 12. Load-settlement curve from loading test (an example from model tests)
a) pushing in, b) pulling out

Table 2
compression pile tension pile
H| I € Q | & | p | Qu | [QL ]
cm kN kN | kPa | kN | kPa | kN kPa
50 [ 0.865 | 0.550 | 2.221 | 1.476 [ 9.512 | 0.745 | 9.512 | 0.253 | 3.236

Qf - ultimate total bearing capacity of pile (in compression)
@ — ultimate point resistance (in compression)

@7, — ultimate mantle resistance (in compression)

@ — ultimate mantle resistance (in tension)

Tm — ultimate unit mantle resistance (in compression)

75, — ultimate unit mantle resistance (in tension)

Additionally, to present a scale effect in model tests, the results of tests of precast
concrete pile models are given. The models had cross-section of 35 x 35 mm and 50
X 50 mm and total length 120 cm. Piles were pressed in sand to the depth of 50 cm
and 100 cm and next subjected to loading tests. Total load was measured by means of
mechanical dynamometer, point resistance by means of strain gauges mounted at the
pile base.

The model set-up consisted of concrete ring of 100 ¢cm diameter and 150 cm
height and loading arrangement. The sand used in the experiments had the following
parameters (after placing in the sand container):

v=159 kN/m®, ¢ =135°, Ip =050, dso = 0.23 mm.

The example of test results is listed in the Table 3 and shown in Fig. 13.
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Fig. 13. Model test results of 75, and 7! for different pile cross-section

Table 3

compression pile | tension pile
BlH[Q][ = [

cm | cm | kN kPa kN | kPa
3.5 50 | 0.702 [ 5.786 | 0.123 | 1.961
50| 50 [ 0.363 | 3.628 | 0.206 | 2.059
3.5 (100 | 0.834 | 5.884 | 0.206 | 1.471
5.0 | 100 | 0.853 | 4.217 | 0.343 | 1.667

B - width of pile model
H - penetration depth

4. A Cosserat model for granular bodies
4.1. Statics and kinematics (polar continuum, axi-symmetric case)

We use a Cartesian coordinate system z;, 2, in which the coordinates z,, z; of
each material point P relate to the actual configuration (Fig. 14). A local coordinate
system is associated with each point P. During deformation each local coordinate
system is displaced by the translations v, (radial translation), v, (vertical translation)
and rotated by the angle w. The rotation w, which is independant of the translations
vy, vz, Will be marked with index ¢ to distinguish it from the nonpolar rotation

1
w= 5(02.1 - 01.2), (1)
which results only from the displacement field vy, vs.
The kinematics are described in the frame of linear theory by the following quantities

(all terms of second and higher order for v;; and w; are neglected):



106

ANDRZEJ TEJCHMAN, JACEK TEJCHMAN

w1

Fig. 14. Degrees of freedom in a Cosserat-continuum

€11 = V11, €22 = V2.2
e [+ P (-3
€12 =012+ W, €21 = V21 — W

(5]
(3 |

€33 =

- < o c
Ky = w‘l, K = u',

(5)

where ( ),; denotes 8( )/dz, €;; the strain tensor, &; the curvature components and z,

the distance of the material point from the symmetry axis.

The curvature tensor is a measure of the relative rotation of neighbouring coordinate
systems, see Fig. 15 (analogy to beam bending theory). The quantities €3, €21 describe
the relative deformations between displacement gradients vy 2,v2; and rotating local
coordinate systems (Fig. 16). Owing to the presence of w*, €13 # €21 in contrast to the
nonpolar continuum. The nonsymmetric tensor ¢;; can be decomposed into a symmetric

part with €];

151
B —
€=t @=ta €= _-
1
= P 1 1
€2 =€ = 5(612 +en) = 5(”1.2 + v2,1)
and into an antisymmetric part €f;
a a s
€51 = €2 = €33 =
1 1
€ = —€h = (€12 — €m) = w° — Z(v21 — V1.2
5 2 2

(6)

(7)

(8)
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The quantities €l,, €3,, €33, €5, €3, describe a part of deformations which come only
the nonpolar displacement field vy, va. €},, €3, describe the relative rotation of the
local coordinate systems in regard to the mean rotation w caused by the displacements
v1,v3 (Eq. 1) — Fig. 17. In Cosserat-continuum there exist two different rotations,
namely: nonpolar rotation w (Eq. 1) and polar rotation w®. The stress tensor is in
general nonsymmetric because of nonsymmetry of the deformation tensor €;;. It can
be described by the five components of the nonsymmetric tensor oy; and two couple
stresses m; associated with the tensor «;.

The equilibrium equations of the seven Cosserat stresses for the static problem
(Fig. 18) with the absence of the body couples read as follows

G-
xzj 22
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—— G

Gc'):-xa 21
'el dx3 T G
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Fig. 18. Streses and couple stresses in a Cosserat continuum
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1
o+ o122+ z—(ﬂu —033)=0 (10)
1
1
01,1 + 0232+ z—Iazl =9 (11)
mi1+maa+0on—012=0 (12)

where 7 is the density of the material.
The virtual work §A per unit volume in a Cosserat continuum for any é¢;; and é«; is

A = 0"'_,'66.'5 + m;bk; (13)

The couple stresses m; can appear in granular materials because of eccentricity of con-
tact forces against the centre of gravity of the grains. Their presence may be also expla-
ined as follows. Consider a square element (l;,l3) of a nonpolar continuum (Fig. 19),
where oy and 03, are the average value of shear stresses along the sides l; and I; of
the element. The normal stresses o7; and o3, at the sides are assumed to be variable in
the 1- and 2-direction. On the basis of equilibrium equations, the stresses 011 and o3z
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Fig. 19. Stresses at an element in nonpolar continuum

are statically equivalent to a force and a moment or to a force intensity (stress) and a
moment intensity (couple stress).

To summarize, a Cosserat continuum differs from a nonpolar continuum through
the fact that the rotation w® appears in the deformation field which is independant of
the translations. Owing to that, each material point has three degrees of freedom of
a rigid body. The rotation w® causes the curvatures x; which are associated with the
couple stresses m;. As a result, the deformation tensor ¢;; and the stress tensor o;; are
nonsymmetric. For more details about the polar continuum the readers are refered to
Giinther (1958), Schafer (1967), Mindlin (1969).
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5. Constitutive relation for granular materials

An elasto-plastic consitutive law with isotropic hardening and softening in the frame
of a Cosserat-continuum was laid down first by Miihlhaus (1987). His law differs from
an usual theory of plasticity by the presence of the couple stresses and the mean grain
diameter.

The following form is used:

6 =€; e, Ki=nri+k (14)
1 or? 1 8¢*
A A i (15)
’ 2G 30"']' ZG ms
dg dg
P\ — P=) = 16
E'J 60'.'_1;, ' Bm,- ( )
3
ES" S+ < S,_, Sii+ = dio (17)
f=7+p(e0,Y)p, g9=1+B(e0,?")p (18)
where in
7 — second deviatoric stress invariant,
S;; — deviatoric stress (Si; = oij — pbij),
— mean pressure (p = %cr.-.-),
o;; — nonsymmetric stress tensor,
m; — couple stresses,
dso - mean grain diameter,
f,g— yield and potential function,
ft, B~ mobilized friction and dilatancy function,
eo — initial void ratio,
4* - second deviatonic plastic deformation invariant,
€;; — deformations,
k; — curvatures (index e denotes elastic and index p plastic deformations),
A - proportionality factor,
G - shear modulus,
6;; — Kronecker delta.

The meaning of f,g,7,9", A in the constitutive relation from Miihlhaus is like in non-
-polar plasticity (Mréz 1963). The equations f =0 and g = 0 describe in the 7, p-
-plane a yield and a potential curve (Fig. 20). The parameter A is calculated from the
consistency condition df = 0. The functions g, 3 are connected with angle of internal
friction ¢ and the angle of dilatancy v as follows:
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Fig. 20. Yield surface and potential surface in the 7, p-space
i =sin ¢, B =sin v

The values of p and B in the function of void ratio ep and plastic distortion «? were
determined on the basis of the compression tests in a biaxial apparatus. The equation
(15) was derived on the basis of consideration of the kinematics (slip and rotation) in
a random assembly of circular rods with equal diameter d = dso representing grains,
Mihlhaus (1987).

The calculation of the elasto-plastic stiffness matrix is performed in the same way
as in the non-polar theory of plasticity. To satisfy full consistency of the yield condition
f =0, the trial stress method linearized expansion of the yield condition about trial
stress point with the so called ,return mapping algorithm” (Ortiz, Simo 1986) was
used.

6. Finite element method ,
6.1. Constitutive parameters

Elastic parameters. The Poisson ratio » was assumed 0.1. The elastic modules
E was assessed according to the Terzaghi formula for the oedometric compression

1+e,
= a
0. =

where e, denotes the void ratio, C, the swelling index (C, = 0.004), o2, vertical stress.
o2 was calculated with two methods. In the first case, a constant value was assumed
4 - h (h - length of the pile). In the second case, the varying value with the depth v - z;
was inserted.

E (19)

Plastic parameters. The calculations were performed only for a dense sand. Fig. 21
shows the adopted curves y and A (¢, = 38.8° for 7* = 0.5%, éer = 31.2°, 1, = 19°).
FE — mesh. Fig. 22 presents the mesh for the computation (550 triangular elements
with linear shape function for an axi-symetric problem were used). The length of
the pile was 0.5 m and the diameter was 0.05 m. The mesh was so determined by
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Fig. 21. Friction factor 4 = f(vp) and dilatancy factor
B = f(7p) for a dense sand
¢ — angle of internal friction,
v — dilatancy angle,
~? - plastic distortion

initial calculation that its further refinement has only negligible influence on the pile
behaviour. The assumed size of the sand container was big enough and it did not affect
the pile forces.

Initial stress state. Our calculations were carried out for two different sets of initial
stress conditions (Fig. 23). In the first case, we assumed the intial stress state often
used in soil mechanics: K, - state

05 =172, (20)
on =K, 09, (21)
033 = o1y (22)
opip=09 =0 (23)

The computation was performed with X, = 0.33.
In the second case, we assumed the initial stresses according to Janssens equation:

o [iee (o 532)]
O3 = 1 €exp 4M - 0. 5 d (24)
on = K ~ 022 (25)
033 = 011 (26)
012 = 0m = ony - tan o, - -2~ 1) @)

0.25d
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Fig. 23. Initial stress conditions (K, — stress state and stress state by Janssen)
M=K -tangp, (28)

where d is the container diameter and o the wall friction angle.

Boundary conditions. The boundary conditions of an axi-symmetric case are pre-
sented in Fig. 24. The assumed boundary conditions along the pile correspond to the

xZé
K o
X-| i - —
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V1 =wcz 0 i i3 .'
= AV *
@ 120,620
ﬂ'I1 = 0
M,we=0 J

S !
J 7. O ]
| \V1s¥2, =0

Fig. 24. Boundary conditions of an axi-symmetric problem

very rough surface. The pile was considered as rigid (it means its deformations were
not taken into account). The pushing or pulling process was produced numerically by
contant successive vertical displacement increment Awv; of all nodal point along the
shaft and the base of the pile. The diplacement increment Av, = 0.05 mm was assu-
med.

Iteration and convergence. A modified Newton-Raphson iteration scheme was car-

ried out with symmetric global stiffness matrix. We applied the initial stress method
with a line search, where the initial displacement and rotation increments in every new
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displacement step were equal to the increments from the previous displacement step.
We adopted the displacement criterion with the following tolerances: [|Av]|2 < 0.001
mm and [|Aw® ||z < 0.01 rad (AV?, Aw® are the incremental displacement and rotation
vector in the iteration i and || ||; denotes the Euclidean norm of the vector).

This procedure turned out to give a sufficiently accurate and fast convergence. The
magnitude of maximal out-of-balance force R — F*~! at the end of every calculation
step was less than 2.5% of the calculated pile shaft force (R denotes the externally
applied nodal loads and F is the vector of nodal point forces in the iteration ¢ — 1).

7. Numerical results and their evaluation
The following effects on the pile behaviour were investigated.

— pile diameter d,

— grain size dso,

— elasticity modulus E,
- dilatancy function 3,

— initial stress state.

The length of the pile was assumed constant for all calculations namely I = 0.5 m.
The Fig. 25-28 show the results obtained from FE-calculation for the pile with d =
0.05 m:

— the mantle force Qnm, the point resistance @, during pushing in (fig. 25a) and
the mantle force Q,, during pulling out dependent on the pile displacement (fig.
25b),

— the sand displacement near the pile (fig. 26, 27),
— the shear stress distribution along the pile mantle (fig. 28).

The force Q,, is equal to the sum of all vertical nodal forces along the pile mantle,
the force @, is obtained through the multiplication of the pile cross section by the mean
vertical stress from the elements under the pile tip. The calculation was carried out for
the initial stress state K, (Eq. 20 - 23 with K, = 0.33), the constant elastic modulus
E = 3300 kN/m? (Eq. 19 with v = 17.1 kN/m?, e, = 0.549, C, = 0.004, h = 0.5 m)
and the dilatancy function 8 = 3(4 — pter), Fig. 21. The two different mean grain size
were considered, namely dso = 0.24 mm and dso = 2.4 mm. During calculations with
dso = 2.4 mm, the element breadths in the first three rows at the pile were changed in
comparison with the mesh from Fig. 22, that they were not smaller than the grains,
These elements were enlarged and assumed corresponding to 0.5, 1.0, 1.0 cm. The
breadths of the remaining elements of FE-mesh were not changed. Some conclusions
can be drawn from calculations:

_ The calculated mantle force during pushing is about 10% bigger than the shaft
force during pulling. As compared to the experimental results, the relation be-
tween the both forces is too small (in the tests, the force @, during pushing was
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25. Calculated shaft force Qm, base force @, during pushing (a) and shaft force

@m during pulling (b) for vertical pile displacement u(!{ = 0.50 m, d = 0.05 m, K, -

initial stress state, E = 3300 kN/m?, 8 = 3(u — per))
1,5 - Q. for dsp = 0.24 mm
2 - @, for dsp = 0.24 mm
3,6 - @ for dsg = 2.4 mm
4 - @, for dsg = 2.4 mm

two times bigger than the force during pulling). The reason might be, that the
initial stress state K, assumed in the calculation does not correspond to the stress
state in the tests. Through the initial pushing of the pile into sand, the K, — state
was disturbed. On the other hand, the same dilatancy angle and the same angle
of internal friction were assumed to the calculations for pushing and pulling. The
triaxial tests for sand- show, that the both angles are for compression (this test
might correspond approximately to the pile pushing) some degrees bigger than
for extension (this test might correspond approximately to the pile pulling). The
bigger the both angles, the greater the bearing capacity of piles. Therefore the
bigger mantle force could occur during pushing than during pulling.

The calculated maximal mantle force for pulling is in accordance with the expe-
rimental results.

The mantle force @y, reaches the limit value (for pushing) or the first clear ma-
ximum (for pulling) for u/d = 4 - 6%. The base force @, increases on the other
hand clear in the range of the displacements v = 0 — 1.0 cm.

The 10-times increase of mean grain causes the increase of the force @,, during
pushing about 40% and during pulling about 30%. This result confirms, that the
force values from model experiments are not comparable with the values from big
experiments. The mantle force from model experiments is overestimated because
of the scale effect, which is caused by the dilatancy constraint of sand in the
shear zone along the pile shaft. The dilatancy is constrainted by the mass of the
surrounding soil. The results from model experiments can be then transfered to
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Fig. 26. Calculated displacements alpng the pile (I = 0.5 m, d = 0.05 m,
dso = 0.24 mm) a) during pushing  b) during pulling

the big piles if the ratio between grain size and pile dimension is the same in the
both cases.

— The size of the sand grains has almost no influence on the base force. The force
Qp is for dsp = 2.4 mm only about 1 — 2% bigger than for D5y = 0.24 mm.

— The calculated thickness of the shear zone along the pile shaft, which does not
depend on the FE-mesh amounts approximately to 20 - dsg for dsp = 0.24 mm to
T dso for dso = 2.4 mm (Fig. 26, 27).

— The distribution of the calculated shear stresses in the residual state (big displa-
cement) has the triangle form during pulling and approximately the rectangle
from (except upper pile region) during pushing (Fig. 28). The stresses have a
tendency to oscillate with travelling peaks.

- The earth pressure coefficients (relation between radial and vertical stresses)
along the pile shaft are equal 1 in the residual state.

The Figures 29-31 present the influence of the pile diameter d on the forces Q,,
and @,. The normalized mantle force Q,,/y!d? and the normalized base force Q,/vd®
in function of u/d are given.

— The mean shear stress along the pile shaft 7, = Q../7dl and the mean point
stress &, = Q,/0.257d? decrease for increasing pile diamters. The stress 7, is: for
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Fig. 27. Calculated displacements along the pile (I = 0.5 m, d = 0.05 m,
dso = 2.4 mm) a) during pushing b) during pulling

the pile with d = 0.15 m, independent of the grain size, about 30% smaller than
for the pile with d = 0.05 m, and the stress o, is corresponding smaller about

40%.

— The forces Q,, reach maximal values for similar big displacements of the pile with
d = 0.15 m as in the case of the pile with the smaller diameter.

In Fig. 32 are presented the calculations of @m and @ for the pile during pushing
with the smaller dilatancy angle (8 = 2(4 — picr), ¥p = 12.5°) and in Fig. 33 with the
5-times bigger elasticity modulus (E = 16500 kN/m?).

— The assumption of the dilatancy function smaller about 33% causes the decrease
of Q,n about 30% and of @, about 35%.

— Owing to the 5-times increase of E-modulus, the calculated mantle force is 2.5-
-times and the base force 3-times bigger. The values of @, and @, for E = 16500
kN/m? are in a good agreement with experimental results.

— The influence of E and 8 on the mantle force during pulling is quantitatively
similar as during pushing.

The results from Fig. 34, 35 were obtained with the elasticity modulus varying with
the depth according to the Eq. 19 (E = 6600 - z; kN/m?). Some conclusions:
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Fig. 28. Calculated shear stress distribution along the pile for two different pile
displacements u
a) during pushing b) during pulling
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. Fig. 29. Calculated normalized shaft force @Q,, during pushing (K, - initial stress
state, £ = 3300 kN/m?, 8 = 3(s — pe))
1-d=005m, dsg=0.24 mm
2-d=0.05m, ds=24mm
3-d=0.15m, dsy=0.24 mm
4-d=0.15m, ds=2.4mm
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Fig. 30. Calculated normalized shaft force @, during pushing (K, - initial stress
state, £ = 3300 kN/m?, 8 = 3(p — pter))
1-d=0.05 m, dso = 0.24 mm
2-d=0.05 m, dso = 2.4 mm
3-d=015m, dso=0.24d mm
4-d=0.15m, ds = 2.4 mm
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Fig. 31. Calculated normalized shaft force @, during pulling (X, - initial stress
state, E = 3300 kN/m?, B = 3(p — jter))
1-d=0.05 m, d50 = 0.24 mm
2-d=0.05m, dsg=24mm
3-d= 0.15 m, dso = 0.24 mm
4-d=015m, dsp=2.4 mm
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Fig. 32. Calculated shaft force @ and point force @, during pushing for vertical pile
displacements u (I = 0.5 m, d = 0.05 m, dsp = 0.24 mm, K, - initial stress state,
E = 3300 kN/m?, 8 = 2(p — per))
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Fig. 33. Calculated shaft force @,, and point force during pushing for vertical pile
displacements u (I = 0.5 m, d = 0.05 m, dsp = 0.24 mm, K, - initial stress state,
E = 16500 kN/m?, 8 = 3(p — pter))



122 ANDRZEJ TEJCHMAN, JACEK TEJCHMAN

Qm, Qp [kN]
0.6

05k Qp//’ .
/
0.4 #
//
3
0.2
01
00 6 8 10
u [mm]

Fig. 34. Calculated shaft force Q,,, base force @p during pushing and shaft force Q,,
during pulling for the pile displacementu u(l=05m,d=0.05m Ds, = 0.24 mm
K, - initial stress state, E = 6600 -z, kN/m3, 8 = (e — pa))

1 - Qm during pushing
2 - @, during pushing
3 - @ during pulling
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Fig. 35. Calculated shear stress distribution along the pile for two different pile
displacements a) during pushing b) during pulling
(!=05m,d=0.05m,dsy = 0.24 mm, K, - initial stress state, £ = 6600 -z,
kN/m?, 8 =3(p — per))
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— The values of @, and Q, in the function of u are qualitatively the same as in
the case of calculations with the constant E — modulus.

— The distribution of shear stress along the pile shaft during pushing is qualitati-

vely similar as during pulling (triangular form

)iin contrast to the rectrangular

distribution which was obtained with the constant elasticity modulus for big pile

displacements (Fig. 28).

In Fig. 36 are presented the results of Q,, and @, for the initial stress state according
to Janssen (Eq. 24 - 28 with M = 0.3 and ¢,, = 0.9 ¢,). This stress state was only
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Fig. 36. Calculated shaft force @, base force @, during pushing (a) and shaft force
Qm during pulling (b) for vertical pile displacement u
(I =0.5 m, d = 0.05 m, dsgp = 0.24 mm, initial stress state by Janssen, E = 3300
kN/maa B =3(p — per))

assumed in the region between the pile and container wall (z; = 0 — 0.5 m). Below
the pile, this state changed into the K, — state. The computation was performed for
E = 3300 kN/m? The consideration of shear stresses at the beginning of the pile
load causes, that the maximal forces @Qm, @, are about 20% smaller than with the
assumption of the K, — state in the whole sand container. The kind of the initial stress
state in sand along the pile has thus an effect on the results.
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8. Conlusions

The numerical results show that the Cosserat approach in connection with a finite
element method is very usefull to study pile problems in regard to:

— investigation of the scale effects,

- determination of the influence of the pile diameter and grain diameter on the pile
forces,

— determination of the thickness of the shear zone along the pile.

The usefulness of the constitutive relation from Miihlhaus for studying the pile bearing
capacity is similar as all elasto—plastic constitutve relations limited because the results
of the shaft and base forces depend on the magnitude of the elasticity modulus assu-
med in the calculations. The determination of the realistic elasticity modulus for pile
problems by means of triaxial and biaxial tests is very difficult. Sand does not produce
pure elastic behaviour and the E-modulus depends strongly on the stress level. For the
determination the pile bearing capacity, the E-modulus should be fitted with the aid
of the back calculations on the basis of the experimental results. With the elasticity
modulus determined in this way, the bearing capacity of the piles with the different
dimensions could be described realistically with elasto-plastic constitutive relation.
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Summary

The behaviour of model and full scale piles in a granular soil under vertical load
was investigated. Some model tests results were compared with numerical calculations
by means of a finite element method using constitutive law by Miihlhaus. An elasto-
-plastic constitutive relation by Miihlhaus with hardening and softening was laid down
for granular bodies in the frame of a nonpolar continuum (Cosserat continuum). Each
material point in a nonpolar continuum has, for a plane and axi-symmetric case, three
degrees of freedom (the two displacements and the rotation independent of the displa-
cements). The consitutive law differs from the usual theory of plasticity due to the
presence of the couple stresses and the mean grain diameter. The numerical results
show that the method used is very useful for studing the scale effect and the shear
zone thickness along the pile. It is also suitable to investigate the bearing capacity of
piles when realistic elastic soil parameters are used.

Streszczenie

W pracy przedstawiono wyniki badan zachowania sie pali modelowych i pali o
naturalnej wielkoéci w piasku pod obcigzeniem pionowym. Niektdre z tych wynikéw
zostaly poréwnane z wynikami numerycznymi w oparciu o metod¢ elementéw skonczo-
nych i prawo konstytutywne Miihlhausa. Sprezysto-plastyczne prawo konstytutywne
Miihlhausa ze wzmocnieniem i oslabieniem, zostalo sformulowane w ramach mechaniki
osrodka ciaglego Cosserat.
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Kazdy materialny punkt tego oérodka ma dla przypadku plaskiego i osiowo-sy-
metrycznego trzy stopnie swobody (dwa przemieszczenia i niezalezny od nich obrét).
Prawo konstytutywne rézni si¢ od praw klasycznej teorii plastycznosci obecnoscia mo-
mentéw naprezeniowych i sredniej $rednicy ziarna. Wyniki numeryczne pokazuja, przy-
datnos¢ zastosowanej metody do obliczania efektu skali uwzgledniajacego srednice pala
i ziarn gruntu oraz szerokosci strefy écinania wzdhuz pobocznicy pali. Metoda ta moze
by¢ takze przydatna do obliczania noénosci pali pod warunkiem przyjecia wiarygodnych
wielkosci sprezystych osrodka gruntowego.



