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Analysis of Variability as Sum of Simple
Stochastic Processes

1. Introduction

Performing the measurement of any arbitrary soil parameter such as moisture con-
tent, unit weight, shearing resistance, cone tip resistance etc. along a defined straight
line, the results of the measurement may by presented in a form of a stochastic process
(Sulikowska 1987). Fig. 1 illustrates such examplary processes. If the measured pro-
perty is such as, for instance, moisture content, the problem consists in determination
the process parameters, taking into account measurement errors if they can be assessed.
However, if the property is a sum of two, sometimes mutually dependent values then
the problem becomes more complicated. Let us consider, as an example, a classical
case of shearing resistance given by a simple Coulomb criterion:

T =0 *tan(¢) +c (1)

Measured value of 7 is a sum of two components: friction — tan(¢) and cohesion - c.
Thus the resultant process 7 is a sum of these component processes. Generally, those
processes are correlated, and the correlation should be negative similarly as for common
random variables. Additionally, the friction component is multiplied by a normal stress
a, which can be a process itself, but this complicates the issue considerably.
Processes represented in figs la, b, ¢ are not stationary. Their expected value incre-
ases with depth and scattering of results, described by the variance of the process, can
also vary. Let us assume that we succeed in transforming the examined process into a
stationary one by either subtracting the trend or if such an approach fails, performing
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Fig. 1. Soil properties as stochastic processes
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the differential operations until the expected value is constant. Let us also assume
that the expectancy E[z] of the process Z, which is a resultant of two other proces-
ses, was approximated by a straight line E[Z|y] = by + ¢ (fig. 1a) or by a parabola
E[Z|y] = ay® + by + ¢ (fig. 1b). Further procedure should include two steps:

1. resolving the conditional expectation of the resultant process into conditional
‘expectations of the components, for instance — in case of shearing resistance into
the friction and cohesion;

2. resolving the fluctuations about the expectancy of the resultant process into the
pertinent component fluctuations.

The first step can be solved traditionally by determination of the friction and cohesion
components at different depths and then evaluation of their relative contribution in
global shearing resistance. The knowledge of such contribution allows to resolve the
resultant shearing resistance expectancy into the friction and cohesion expectances.

In the further part of this paper the second item will be examined. A special atten-
tion will be drawn to the following issues:

— possibilities of the resolution of the resultant fluctuation process into the compo-
nent ones,

- examination of the conditions required of the resultant process to get resolved
into more simple ones.

The whole problem can be simplified when two component processes are examined and
one of them is treated as measurement errors. The resolution of the resultant process
will then result in the removal of those errors.

To perform the calculation, one must first determine formulae that relate the pa-
rameters of the component processes to the resulting one. Main processes utilized in
engineering practice are the gaussian ARIMA (p,d,q) ones. They are autoregressive
integrated moving average processes where p represents the order of autoregression,
d is the order of differential operation and g indicates the order of moving average.
Summation and resolution of such processes will be described generally and the first
and second order processes disturbed by measurement errors will be discussed more
thoroughly.

2. Basic relations for summation of processes

In the great majority of practical applications one will have to deal with the summa-
tion of not more than three processes, one of which usually describing the measurement
errors. That is why the sum of only three processes will be discussed here. Obviously,
the formulae for any arbitrary number of component processes can be derived, but
these formulae become increasingly complex. '

An ARIMA (p,d, q) process is given by the expression (1):

#(B)V¢X, = 0(B)a; (2)
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where:

- X, is a process value

- B is a backshift operator such that

BX: = X.'_g (3)

V is a differential operator such that
VX=X, - X,.1 =(1 - B)X, (4)
VX, =V(VXy) = Xy — 2Xp-1 + Xi—a (5)
— ¢(B) and 6(B) are operational polynomials of p-th and g¢-th order
#(B)=1—¢$1B—¢B*—... - ¢,B" (6)
6(b)=1—-6,B—6,B*—...—0,B* (7

- a; is a gaussian white noise process with zero expectancy and variance equal to
2
aﬂ?
— t represents a position of X; in the whole realization.

ARIMA (p,0,q) is a stationary autoregressive and moving average process ARMA
(p,q). ARMA (p,0) becomes an autoregressive process AR (p) of p-th order, ARMA
(0, ¢) reduces to a moving average MA (q) process of g-th order.

Let us now assume that three ARIMA processes XV, X{®, X are given and
that their orders are (py,d1,q1), (p2,d2,q2), (p3,ds,qs) correspondingly. One of them,
in the most simple case, can be a white noise ARIMA (0, 0, 0) and can be treated as
an uncorrelated process of measurement errors. In a general case however, all three of
them can be mutually correlated.

The task is to determine the character and order of the resultant process Z; which
is the sum of the components. Also its parameters related to those of the component
processes should be found.

Z, =X + X + xP (8)

If both sides of the expression (2) are multiplied by the operator ¢~'(B)V~, the
following will be received:

X, = ¢"Y(B)V~%0(B)a, (9)
Basing on formula (9), the component processes X" for i = 1 to 3 can be written as:

X0 = 97 (B)V 00, B)af? (10)
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¢; ! are inverses of the operational polynomials of p;-th order given by the expression
(6), 8:(B) are operational polynomials of g;-th order, a{”) are white noises with zero
expectances and variances equal to o2;. These white noises can be mutually correlated
it is their covariances may not be equal to zero so also the component processes will
be correlated. Substituting (10) into (8) and in order to get rid of the negative powers
multiplying both sides by ¢1(B) ¢5(B) ¢3(B) V) V42 @), the following formula

is received:

¢1(B)éz(B)qu(B)V(“(‘“"*““‘*“‘”Z; =

= ¢o( B)da(B)0y( B)vtd(2)+d(3))agi)+

+61(B)ga( BYo(B)V 0+ 40Naf2) an
+¢1(B) 2 B)3( B) V) +d(2)g )

The polynomial ¢,(B)ds(B)es(B)VEN+d2+dG) is of (p, + py + ps + di + dy + d3)-th
order and polynomials situated beside are of (p + ps + q1 +da + d3), (p1 + ps + @2 +
dy + d3) and (p1 + p2 + g3 + di + dz) orders correspondingly. Thus, the expression (11)
defines an ARIMA (p, d, q) process:

qb(B)VdZ! = 0(B)u, ‘ (12)
in which:

— the order of autoregression equals p; + p; + pa,
— the order of differential operation equals d; + d; + ds,

— the order of moving average equals the greatest order of polynomials on the right
hand side of the equation (11).

As can be scen from the above consideration, summing the ARIMA processes yields
a new ARIMA process of higher orders. Not only does the order of autoregression
increase but so do the orders of differential operation and moving average. Even a sum
of simple processes produce a higher order result and make the calculation procedure
tedious.

To preserve the generality of considerations a general ARIMA process will be di-
scussed first. By assuming that some or all of pertinent numbers p,d, ¢ are equal to
zero, it can be then reduced to ARMA, AR, MA or even to a white noise. Because of
laborious calculations when dealing with high order processes, a detailed analysis will
be performed only for relatively simple autoregressive processes disturbed by a white

noise.

3. Single ARIMA process disturbed by measurement errors

Let us assume that a process Z; is measured and it is a sum of a process X! -
ARIMA (p1,d;,q1) and a white noise X® it is ARIMA (0, 0, 0). Expression (11) will
then take a shape:

$1(B)VZ, = 0,(B)al + ¢,(B)Vi Vg i
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(11) represents the process in which p = py, d = dy, ¢ = max (1, p1 + d;). Using formula
(12) it can is seen that u, is a white noise having a zero expectancy and a variance
which depends upon the variances and parameters of the component processes.

Two particular cases will be discussed in detail; an AR (1) process disturbed by a
white noise and a sum of two AR(1) also with a white noise interference.

3.1. Superposition of an AR(1) process and a white noise

AR(1) is the most simple autoregressive process whose order p = 1. If a white noise
is added to it then:
=1 h(B)=1-¢)(B); 6,(B)=1; di=0; q=0;
p2=0; ¢2(B)=0; 0:(B) =0; dz2=0; g2=0;
and the resultant process will be characterized by:
p=p1=1,d=0,9 = max (q1,p1 + di).

thus if a white noise is added to an AR(1) process, the resultant is an ARIMA (1,0,1)
= ARMA (1, 1) process.

When an assumption is made that a soil property, which is analysed, is described by
the AR(1) process, and an uncorrelated random errors are made during the measuring,
the resultant process will be ARMA (1, 1). According to (13) it can be written as:

(1-¢"B) Z, = a{" + (1 - ¢{"'B) afY (14)
50:

Z= V71 + ol + af?) - ¢{Va?; (15)
By analogy, utilizing (16) for ¢(B) =1 — ¢,(B) and (B) = 1 — 6,(B) (ARMA (1, 1))
there will be:

Zy= 2y +ug — Oruy,y (16)

It is very easy to notice that as (15) and (16) describe the same process so ¢; = oM.
To determine 6; and a variance-o2? of u, process either autocovariance functions of
processes (15) and (16) or their spectra must be compared. Autocovariance functions
were compared here.

An autocovariance function (k) for the process (18) is defined as an expected
value:

v(k) = ElZZis)=E [ Z1Zok + 0" Zis + aP Zik — ¢V, 2,
k) = (k= 1)+ (k) +1D (k) — 47D (k - 1) (17)
where
MD(k)=0% =v for k=0
=0 for >0
@)(k) =02 =wvy for k=0 (18)
=0 for k>0
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and ¢, = V.
After substituting (18) into (17) one receives for k = 0:

7(0) = ¢ry(=1) + v1 4 v; — 17 D(-1)

Knowing that the autocovariance function is symmetrical it is y(-1) = 4(1):
1(-1) = E [a, 2] = B [$a, Z, s + aPia + 0, — 41a(a)]
1(—1) = $rv2 — 102 = 0

Hence:

7(0) = d1y(1) + v1 + v, (19)

For k = 1 after the substitution into (20):

7(1) = ¢17(0) ++(1) + 7 — 81982(0)

(1) = ¢1[7(0) — v3) (20)
and for k > 1:
y(k) = ¢{y(k — 1) = gry(k - 1) (21)

Similarly, the autocovariance function of the same compound process but given by (16)
takes a form:

E [ZtZt-—k] =E[$Zi-1Zyk + wiZyy — w12k (22)
For consecutive £ = 0,1 and k > 1 one receives:

—fork=0

7(0) = $17(1) + v — 11z (—1) (23)
where v = o2
Yuz(=1) = E[us12)) = E [$1 Ze_1ths—1 + ette_y — Oyugug_y]
Yuz(—1) = v(¢1 — 1) (24)
Now substituting (24) into (23):
7(0) = ¢1y(1) +v (1 - 6,6, +63) (25)
—fork=1

¥(1) = ¢17(0) + Yuz(1) = 017.:(0)
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and because 7,:(1) = E[ui41Z;] = 0 as the current value of the process does not
depend upon the future random impulse, so:

‘7(1) = $17(0) — b1v (26)
—fork>1
v(k) = d1y(k - 1) (27)

Now one should compare the expressions for autocovariances of the processes given by
(15) and (16). This must be done for consecutive k. If k = 0 then from (19) and (26):

G1v(1) + v+ v = $1y(1) + v (1 — 6191 + 9%)
vitv=v(l—big+6]) = A (28)

One can conclude from the above formula that the variance v of the white noise genera-
ting the resultant process, is not just a simple sum of the variances v, generating AR(1)
and v; of measurement errors, but also depends on the resultant process parameters
0, and ¢;.

For k = 1 formulae (20) and (26) are compared and:

é1 (7(0) — v2) = ¢17(0) — ;v
vy = v, (29)

For k > 1, using (21) and (27), an identity is received.
It is easy now, to find the values of the parameters of the resultant process if the
parameters of the component processes are known. From (18) ¢; = ¢{!) and from (29):

2 “5;_;” (30)

Substituting (30) into (28) produces a quadratic equation of ;:

v + vz
P12

The solution consists of two roots whose product equals one. Ounly one root fulfils
the requirement of the process inversibility as only one root lies in the interval —1 <
01 < 1. The resultant process has got a variance which can be computed by taking an
expectancy of a square of the expression (16):

1— 24,0, + 62
1-¢
It is worth noting that the inverse problem (resolution of the ARMA (1,1) into AR(1)

and white noise) is not always possible. It is seen from (30) that the variance v; of the
white noise added to the AR(1) can be calculated from the formula:

0?—91[¢1+ ]+1=0 (31)

E[ZZ]=v (32)
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01'0

U = ¢1 (33)
As v and v; must be always positive, it implies that 8, and ¢, of the resultant process
must be of the same sign. The above is indispensable if one wants to get an AR(1)
process after subtraction of a white noise from ARMA (1, 1). If this condition is not
satisfied, a given ARMA (1, 1) process can be resolved but only into an AR(1) and a
moving average process of the first order MA(1) (Knabe 1987). The relations presented
above make it easy to separate measurement errors as a white noise if it is known that

the process to which those errors are added is AR(1), so the process which is recorded
is ARMA(1, 1).

3.2. Sum of two AR(1) processes and a white noise

It was proved in the point 3.1 that the resultant of an AR(1) and a white noise
is an ARMA (1, 1) process. Hence the sum of two AR(1) and a white noise can be
treated as a sum of of an AR(1) and ARMA (1, 1). Let us assume that the measured
process Z; is a sum of a process X; -~ ARMA(1, 1) and a process Y; — AR(1). These
processes are described by the following formula:

(1—¢:B)X:=(1—0.B)u, } (34)
(1-¢,B)Y: = w,
According to (11) the resultant process Z; = X; + Y, satisfies the relation:
(1—¢:B) (1 -¢yB)Z, = (1-0,B) (1— = ¢, )us + (1 — ¢, B)w, (35)
Hence:
Zi = (¢z+¢y)Zt-1 — by Zis + ur + wy — (0 + Sy )us—y — dowey +
+ O:¢yus-2 (36)
Expression (36) implies that the resultant process is ARMA (2, 2) so:
Zy=$1Zs1 + $2Zi_3 + €1 — Ore4_1 — Oze4_ (37)

Such a process depends upon five parameters ¢1, ¢2, 61, 02, 02. They can be determined

by means of the parameters ¢, ¢,, 0,02, 02 of the component processes. As before, an

autocovariance functions of (36) and (37) are used to derive the relations for calculating
the parameters of the resultant process. The autocovariance function v(k) of Z, given
by (37) is an expectancy:

Y(k) = E[Z:Z,-k) = [$1Zs-1Zs-k + $2Z21-2 21k + €12tk — 01641 %41 — O:_2Z: ]
For k = 0, 1, 2 one receives:

7(0) = ¢1v(1)+ = ¢27(2) + o2 [1 + 03 + 03 — $161 — $20; — 924"(12) + ¢19192] (38)

¥(1) = [11(0) + 02 (B:82 — 61 — 0241)] / (1 - ¢) (39)
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7(2) = ¢17(1) + ¢27(0) — 6207 (40)

For ¢ = 0 and 6; = 0 formulae (38), (39) and (40) reduce to (25), (26) and (27). If in
turn the expression (36) is used to define the autocovariance function, one gets:

¥(0) = (¢z+¢y)v(1) — $26,7(2) + a?& {1+ (¢ — by) (=0 — ¢y + $26,0:)} +

+ ol (1—¢.4y) (41)
(1) (1 + ¢=4y) = ‘73 [~0z + ¢y + 020, (82 — 6)] — ¢z°'a2u + (6= + ¢,)7(0)  (42)
Y(2) = (¢= + ¢y) ¥(1) — ¢z¢y'¥(0) + azﬁﬁv"': (43)

Again for ¢, = ¢1,0;, =0, ¢, = 0 and 02 = v,, the above formulae reduce to (19), (20)
and (21).

Treating (41), (42) and (43) as a set of simultaneous equations, 7(0),7(1) and 4(2)
can be calculated as functions of ¢, ¢,, 0, 02 and o2. This is done as follows:

WO _ W1 Wz

10) = 77 1) = 37 1) = 37 (44)

where:
WG = o [1 + ¢a:¢y] + az [¢:: + ¢‘y] [1_ = ¢’r¢y] —as [1 + ¢z¢y] ¢‘:¢y
wl = a [qsa: -+ ¢y] + a [1 - ¢z¢:] —4as [¢:r: + ¢y] ¢.t¢'y
W2 = a [(¢r + ¢y)2 - ¢z¢y(l + ¢r¢’y)] + az [‘?Sz 4 st] [1 b ¢'::¢’y] + (45)

+ as [(1 + ¢:¢y) - (¢’.1: + ¢y)2]
W = [(1 + ¢x¢y)2 == (¢z + ¢y)2] [1 3 ¢-‘=¢yl

and:

az = 0'3 [_¢ﬂ = Bx + 9:¢v(¢z = z’)] = 0-3.-‘061'
az = 00,4,

a1 =03 [1— (8z — 0:)(0z + By — $29,0:)] + 02 [1 — ¢y }
(46)

Comparing (36) to (37) yields:
b1 =9+ ¢y, $2=—0:4, (47)
Let us assign basing on (41), (42) and (43):

b= 7(0) — ¢17(1) — ¢27(2) =
= o2[1 + 0%+ 03 — ¢101 — pally — 0207 + ¢10:165] (48)
by = "»{’1’7(0) + [1 - ¢2] ’Y(l) = 0'3 [—91 — 020 + 9152]
bs = 7(2) — ¢17(1) — ¢27(0) = 020,
Hence:
b3
by =—-—= (49)
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b=y
T byto?

It is straightforward to verify that a; = b;, az = b3, a3 = b3. Thus it is not necessary
to calculate the autocovariances v(0), 7(1) and 7(2) to obtain b, b; and bs.

Having inserted (49) and (50) into the first equation of (48) a non-linear equation
for the variance o2, a white noise generating the resultant process, is obtained. If we
assign o2 = v, the equation will take a shape:

0, (50)

(asdy — az)? _ ¢i(asdr —a2) [as
ko (aa+'v)2 az+v u+1]+
+ %(¢2 +v¢’%) —a =0 { (51)

It has two constraints that limit the root searched:
v>0 and v# —as (52)

To get 6 parameters formulae (49) do (50) are applied. In this way a set of five parame-
ters of the resultant ARMA (2, 2) process being the sum of ARMA (1, 1) and AR(1)
is computed.

An inverse issue consists in a resolution of the ARMA (2, 2) process into two
component processes mentioned above. The procedure is as follows:
utilizing (47) a quadratic equation in ¢ is received, roots of which are ¢, and ¢,:

¢ — ¢ —¢2=0 (53)
To preserve the stationarity of the process these roots must lie in the interval between
-1 and 1.
In the next stage by, b, and ba are calculated from (47) and they are correspondingly
equal to ai, a; and aa. @y, a;, a3 are defined by a set of simultaneous equations (46).
From the last of these equations:
asz

0, = — 54
o34, (54)
A transformation of the second one yields:
, a3 as $y0% — ay
=231 g Dte T ER 55
A= e+ 2+ 2t (55)

Putting (54) and (55) into the first one forms a non-linear equation from which o2 can
be calculated:

o = atfi-(o- ) (e )]+
+ %(1+m+§§)+%] (1+¢2) (56)

Numerical solution of this equation permits to evaluate o2 > 0, then in the next step
o2 > 0 from (55) and —1 < 6; < 1 from (54).



86 W. KNABE, G. ROZYNSKI

4. Numerical experiments

Theoretical formulae were presented in previous chapters for calculation of the
parameters of a resultant process if its components were given or vice versa; ways
of resolving the resultant process into its components were also discussed. However,
accurate values of the parameters are practically never known and only a set of numbers
being a realization of a certain process is at the disposal. Basing on it stochastic
models are tried to match the observed series. They are tried by the estimation of their
parameters and finally the one matching best is accepted. Nevertheless, its parameters
are burdened with errors. The following numerical experiment was performed in order
to find out how the length of the realization influences the accuracy of estimated
parameters of both the resultant and the component processes:

- two realizations of an AR(1) process were generated. Their variances were identi-
cal: 2 = 5 but autoregressive parameters were different and equal to 0.8 and 0.5.
¢1 are taken positive because the autocorrelation function p(k) of such AR(1)
process is a decaying, positive exponential curve. For negative ¢, the sign of
autocorrelations alters in consecutive steps being positive when k is even and
negative for odd k. Such models are not very useful in geotechnical applications.
Moreover, another assumption was made that the intervals between consecutive
steps are identical for both realizations. If they are not the same they must be
stated and in a particular case when their ratio is equal to In(0.05)/1n(0.8), the
same autoregressive process will be received. Lengths of both realizations are the
same n = 5000;

— a process of white noise was generated with a zero expectation and a variance
v = 1 which is equal to 20% of the variances of autoregressive processes. As above
n = 5000.

The described basic processes can be written as:

Zi =0.8 Zg-] + ﬂgl) (57)
Z,=052Z,+a (58)
Z, =a® (59)

Variances of random impulses of these processes are: 02, = 1.8, a2, = 3.75, 02, = 1.
Two resultant processes were analysed and an attempt to resolve them back on basic
processes was made afterwards:

- an ARMA (1, 1) process, being a combination of AR(1) process (60 and a white
noise (62),

- an ARMA (1, 1) process, being a combination of AR(1) process{61) and a white
noise (62).
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4.1. AR(1) process disturbed by a white noise

If two basic processes (57) and (58) are combined, the following resultant process
is received:

Zi =08 Ziy + ul" — 0.2467 ul®), (60)

Its variance v(0) = 6.0 and its white noise variance o2, = vy + 3.2426. When basic
processes (58) and (59) are merged then:

Zy =05 Zy_y + ul? —0.101 u{? (61)

and 7(0) = 6.0,02, = v = 4.9495.
The following samples were analysed:

(a) first 100 elements  (d) 100 elements from 3001 to 3100

(b) first 500 elements  fe) 500 elements from 3001 to 3500

(c) first 2000 elements (f) last 2000 elements.
Parameters of processes represented by samples (a) — (f) were estimated by means
of the autocovariance function, assuming that they represent a theoretical model of
ARMA (1, 1). At first the effect of the length of the samples (100, 500, 2000) on the
estimates of the parameters was examined. Secondly the behaviour of the estimates
(accuracy, standard errors) for the same sample length was scrutinized. Results are
shown in table 1 and la.

Column 5 in table 1 contains the estimates ¢; and estimates of the standard de-
viations; the exact value ¢, = 0.8 does not differ much from the estimates and in
each case is situated in the confidence interval ¢; + &¢; (column 2 in table la). Es-
timates of #; are much less accurate. In four of six cases the exact value is outside
0, + 60, (column 3 in table 1a), but always within 6, + 250;. In one case (sample (a)
of 100 elements) the standard deviation estimate is greater than the estimate 8, itself
(66, = 0.156,0, = 0.063). 6, = 0 hypothesis could not be rejected in this case even for
a high level of significance.

The knowledge of the estimates of the resultant process parameters (table 1) makes
it possible to calculate the estimates of the component processes parameters. Using
(29) one can determine the estimate of the white noise variance that disturbs the
initial AR(1) process. However one must realize that direct inserting of ¢;,6; and a2,
into (29) and calculating v, might cause serious errors. To get more accurate results
and to verify the calculated values of v; a procedure applying a Monte Carlo method
was used. For each sample sets of ¢y, §; and o2, values were generated 20000 times and
each set put into (29). A mean and a variance for 20000 results were then calculated.
The results are presented in table 2. As can be noticed from table 2, the calculated
(column 3) estimates of the variance of the white noise added to the initial AR(1)
are scattered considerably about the theoretical value of v; equal to one. This refers
especially to short series (n = 100). A Monte Carlo method could have been applied
here because the exact value of v; = 1.0 was known in advance. However the use of
Monte Carlo method did not improve the accuracy of v considerably. Of course, in
practical applications, the exact value of o2, is not known and, in order to calculate
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Table 1

Estimates of the ARMA (1, 1) process parameters for #1 = 0.8, 6; = 0.2467,
o2 =3.2426, v(0) = 6.0, z = 0.0.

Sample | Number | Sample | Sample | Parameters | Correlation Random
mark of mean | variance | with their | coefficient | impulse
elements standard between | variance
errors q?a and @
n ECHE N ; 52
1 2 3 4 5 6 7 8
a 100 -0.447 | 5173 |0.74 | 0.063 0.7762 2.252
0.117 | 0.156
d 100 0.125 5.305 | 0.761 | 0.26 0.7878 3.320
0.145 | 0.193
b 500 -0.011 5.680 (0.76 |0.173 0.7629 3.132
0.049 | 0.066
e 500 -0.030 5.407 | 0.815 | 0.347 0.7556 3.354
0.057 | 0.08
c 2000 -0.118 | 5.629 |[0.78 |0.222 0.7588 3.138
0.021 | 0.029
f 2000 | 0.009 | 5.851 |0.817 |0.31 0.7442 3.301
0.026 | 0.036
Table 1a

Confidence intervals for 4:3, and &, from table 1

Sample ¢+ ad, 0, + a6,
mark | ¢ + 264, 6, + 260,
1 2 3
a | 0623 0.857 | -0.093 — 0.218
0.505 — 0.974 | -0.248 — 0.347
d [0.672-0.907 |_0.0674 — 0.453
0.471 - 1.052 | -0.126 - 0.646
b | 0.712-0.808 | 0.107 - 0.239
0.663 - 0.857 | 0.042 - 0.305
e | 0.758 — 0.812 | 0.267 — 0.426
0.701 - 0.929 | 0.188 - 0.506
¢ 0.759 — 0.800 | 0.193 - 0.250
0.738 - 0.821 | 0.164 - 0.279
f  [0.791-0.843 | 0.273 - 0.346
0.786 — 0.868 | 0.237 — 0.383
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Table 2
Estimates of a disturbing white noise variance (accurate value o2; = v, = 1.0)
Sample | Sample | White noise | Estimate of | Estimate of 9, from
mark | length variance standard direct calculation
estimate deviation not using
of 0y Monte-Carlo method
n f)g &Ug f?z
1 2 3 4 5
a 100 0.1908 0.7070 0.218
d 100 1.0037 0.7620 1.134
b 500 0.7213 0.2690 0.714
e 500 1.3548 0.3170 1.426
c 2000 0.9103 0.1638 0.892
f 2000 1.2144 0.2070 1.252

the estimate of v;, one must use the values from column 8 of table 1. Table 3 shows
how the ARMA (1, 1) process was resolved on two component processes AR(1) and a
white noise for the results presented in table 1.

Table 3
Estimates of component processes calculated on the basis of estimates of resultant
process samples

Sample | Sample | AR(1) autore- | AR(1) white | AR(1) [ White noise
mark | length gressive noise variance | variance
parameter variance from (29)
n ¢ &% ¥ (0) 523
1 2 3 4 5 6
a 100 0.740 2.230 4.930 0.218
d 100 0.761 1.752 4.171 1.134
b 500 0.760 2.100 4.970 0.714
e 500 0.815 1.380 3.980 1.426
c 2000 0.780 1.890 4.740 0.892
f 2000 0.817 1.530 4.600 1.252

Estimates of the autoregressive parameter ¢; are quite accurate. This allows to state
that if ¢, is great enough (close to 1.0) what means that the neighbouring values of the
process are considerably correlated, then the proposed method is reasonably accurate. It
should be expected that for ¢, closer to zero, the separation of measurement errors will
be less effective as AR(1) with smaller ¢, becomes similar to a white noise. This can also
be deduced from the fact that AR(1) autocorrelation function p(k) = ¢* approaches
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zero rapidly for k > 1 when ¢, tends to zero. To show this a similar analysis was done
for ¢1 = 0.5 in which the correlation between the neighbouring points is about 2.5 times
smaller than for ¢; = 0.8. The results of the estimates of the parameters calculated on
a basis of the realizations of the resultant process given by formula (61) are quoted in
table 4 and 4a.

Table 4
Estimates of the ARMA (1, 1) process parameters for ¢ = 0.5, §; = 0.101,
o2 = 4.95, 4(0) = 6.0, z = 0.0.

Samples | Number | Sample | Sample | Parameters | Correlation | Random

mark of mean | variance | with their coefficient | impulse
elements standard between variance
€rrors q31 and él
& &
n z 4(0) 6y | o6, G
1 2 3 4 5 6 7 8
a 100 -0.840 5.047 [ 0.324 | 0.013 0.968 5.169
0.376 | 0.393
d 100 0.152 5.163 |0.991 | 0.924 0.674 5.142
0.017 | 0.030
b 500 0.0006 | 5.289 | 0.374 | 0.025 0.954 4.651
0.117 | 0.123
e 500 0.2625 | 5.623 [ 0.513 | 0.171 0.9327 4.950
0.224 | 0.242
c 2000 0.0253 | 5.605 | 0.460 | 0.106 0.9327 4.841
0.053 | 0.058
f 2000 0.0567 | 6.058 | 0.469 | 0.069 0.929 5.037
0.047 | 0.051

It is obvious at the first glance, that both ¢, and 0, estimates are disturbed by
considerable errors and it would be purposeless to separate a white noise and an AR(1)
process. So it seems reasonable at the stage of identification to assume that one deals
with an AR(1) process and to estimate its parameters knowing that these estimates
will have greater standard deviations then those of the initial AR(1). Such a procedure
ought to be performed because in the majority of cases the hypothesis of #, = 0 can
not be rejected at the significance level of 5% (confidence interval §, +260,).

4.2. ARMA (2, 2) process as a combination of two AR(1) and a white
noise

When processes (57), (58) and (59) are added together the resultant process is
ARMA (2, 2). It has the following theoretical parameters: ¢; = 1.3, ¢ = -04, 4, =
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Confidence intervals for ¢, and 6, from table 4

Sample ¢+ 6y 6, + 56,
mark ¢ + 26¢ 0, + 266,
1 2 3
a -0.052 — 0.700 | -0.380 — 0.406
-0.428 - 1.076 | -0.773 - 0.800
d 0.974 — 1.008 | _0.894 — 0.954
0.957 — 1.025 | 0.864 — 0.984
b 0.257 — 0.491 | _0.098 — 0.148
0.140 - 0.608 | -0.022 — 0.271
e 0.289 - 0.737 | -0.071 - 0.413
0.065 — 0.961 | -0.313 - 0.655
c 0.407 — 0.513 | _0.048 — 0.164
0.354 — 0.566 | -0.010 — 0.222
f 0.422 — 0.516 | _0.018 — 0.120
0.375 - 0.563 | -0.033 —0.171

0.764, 6; = -0.0564, v(0) = 11, 02 = 7.09 and Z = 0. N = 5000 elements of such process
were generated and the following samples were taken:

- first 100, 500, 1000, 2000, 3000 and 4000 elements,

- the whole realization.

These samples were estimated on the assumption that they are the realizations of the
ARMA (2, 2) process. The results are presented in table 5.
The following conclusions can be drawn from the above table:

- there is no use applying a compound ARMA (2, 2) model (5 parameters) to
shorter series — below 2000 elements, as either the estimates are inaccurate or the
estimation is not feasible,

— more simple models can be used to fit the series as e.g. an ARMA (1, 1) one and
a separation of a white noise (see 4.1) can be done,

- long samples fit quite well even though the standard errors of the estimates
| decrease very slowly with the increase of the lengths of the realizations.
|
To illustrate how the process ARMA (2, 2) is resolved, calculations were carried out
for the estimation obtained for n = 5000. Accurate, theoretical values are in brackets:
Generated process satisfies the equation:

Zg = 1.3Zt_1 = 0.4Zg_2 + u; — 0.7641.“-1 + 0.0564!‘1-2
After having resolved it into AR(1) + AR(1) + white noise:
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Table 5
Estimates of ARMA (2, 2) parameters for $1 =13, ¢ =-04, 6, = 0.764,
62 = -0.0564, 7(0) = 11, 7 = 0, 02 = 7.09

Sample | Mean | Variance | White Autoregressive | Moving average
length noise parameters parameters
variance | ¢ $2 [ [}
n z 7(0) 62 o, o ath a0,
1 2 3 4 5 6 7 8
100 0.65 10.58 6.73 [0.35 0.22 | -0.175 -0.09
1.60 1.26 1.51 0.46

500 0.23 10.85 | ARMA(2, 2) parameters can not be estimated
1000 0.15 9.85 - initial autoregressive estimates out of
2000 0.11 10.34 the range of stationarity
3000 0.065 | 10.68 6.74 141 | -0.46 0.96 -0.086
0.27 0.2 0.22 0.044
4000 | -0.04 10.99 7.00 1.56 -0.58 1.029 | -0.083
0.041 | 0.035 0.042 0.032
5000 | -0.04 11.02 7.04 1.31 -0.395 0.775 | -0.0455
0.18 0.12 0.155 0.05

- first component - AR(1) ¢, = 0.472 (0.5), o2 =4.71 (4.95)
~ second component — AR(1) ¢; = 0.857 (0.8), o2, = 0.61 (1.8)

~ third component - white noise o2, = 0.81 (1)

As can be seen, except the variance of the white noise in the second AR(1) process,
other parameters were approximated quite accurately.

4.3. Application of Kalman filter in resolving ARMA (1, 1) into AR(1)
and white noise

Estimates of the ARMA (1, 1) process parameters given in the table 1 allow to
determine estimates of the components: é1, ¥y in AR(1) and v, of the white noise,
given by (29) - table 3, column 6.These estimates could be calculated because 0;,
and v of the ARMA (1, 1) were known. The question appears whether it would be
reasonable to use the Kalman filter to remove a white noise from the initial series
ARMA (1, 1) having in mind that the formula (29) is applied to get the estimate of
vz. After filtering the remaining series can be treated as AR(1) and its parameters
estimated. Such procedure consists of the following stages: “

— estimation of parameters as ARMA (1, B,
~ resolution into AR(1) and a white noise (see 4.1),

- filtering off the white noise from the initial series using Kalman’s filter,



ANALYSIS OF VARIABILITY AS SUM OF SIMPLE STOCHASTIC PROCESSES 93

- estimation of parameters as AR(1) for the remaining series.

The method was tested using 100 element samples taken from the process being a sum
of (57) and (58) formerly generated. The results are shown in table 6.

Table 6
Estimates of AR(1) parameters for ¢; = 0.8, v; = 1.8, 4(0) = 5 after having filtered
off a white noise

Order | ¢yand | AR(1) | Added | 4, and | AR(1)
numbers | standard | white white | standard | white
in 5000 | deviation | noise noise | deviation | noise
element after variance | variance | before | variance
realiza- | filtering after filtering | before

tion filtering filtering

b | w | a2 | s | w
1 2 3 4 5 6
501 - 0.826 2.11 0.99 0.85 1.83
600 0.06 0.22
601 - 0.65 2.37 0.90 0.64 2.45
700 0.08 0.20
1401 - 0.584 3.38 0.2 0.56 3.47
1500 0.08 0.43
1901 - 0.796 1.59 1.43 0.83 1.09
2000 0.06 0.19
2501 - 0.742 1.40 1.41 0.84 1.00
2600 0.07 0.26
3001 - 0.70 1.59 1.19 0.70 1.43
3100 0.07 -0.16
3501 - 0.85 1.63 1.15 0.89 1.15
3600 0.05 0:25

Estimates ¢, and standard deviations are placed in the 5-th column. Estimates of ¢,
with standard deviations after filtering are positioned in the 2-nd column. Estimates
of ¢, after filtering are a bit more accurate when compared to those derived from
not filtered series. The average difference between the estimates and the theoretical
value of ¢; = 0.8 is 15% smaller for filtered series than for unfiltered. It is much more
important that the filtration reduced standard deviations &¢; od 431 nearly four times
and therefore the estimates ¢, of filtered series acquire more confidence. It is also worth
noting that the estimates of an AR(1) white noise variance v; improve considerably.
Mean standard deviation of the estimates in column 3, calculated with regard to the
accurate value of v; = 1.8, is 22% lower when compared to that computed for column
6, and decreased from 0.91 to 0.71.
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Summarizing, it can be stated that Kalman filtration of a white noise from ARMA
(1, 1) following the initial resolution of the ARMA (1, 1) process into AR(1) and a
white noise and then the estimation of parameters of the remaining series as AR(1)
improves the final evaluation of AR(1) parameters.

5. Final conclusions

The method of stochastic processes separation discussed in the paper can be applied
when: )

— quite a great number of observations is at the disposal; the more simple process
the shorter realization is required; for example 100 elements can be sufficient for
AR(1) process and even 1000 elements may not be sufficient for ARMA (2, 2),

- simple stochastic model can be used to describe the observations,

- one is mainly interested in separating measurement errors from processes descri-
bed by relatively simple models such that the resultant process is also relatively
simple,

- neighbouring points of the series are highly correlated.
It is not recommended to apply the method if:

- number of observations is small,
- neighbouring elements in the series are not strongly correlated,

— estimates of the resultant series, before resolution, are characterized by high stan-
dard deviations,

- some estimates of the parameters of the observed process are close to zero; it is
much better to simplify the model of the resultant process instead of attempting
to extract the measurement errors.

In general one should say that the presentation of soil properties as stochastic
processes requires additionally to the presentation of the estimates of the parameters
also the presentation of their standard deviations. Great standard deviations (errors)
occur even if the resultant process is a sum of relatively simple components. There is
therefore rather little chance to determine, in the nearest future, stochastic parameters
of such processes as for instance shearing resistance which are composed of two or
more processes and should be resolved into basic components. Although theoretical
calculations are feasible and not very complicated, practical applications require long
series of measurements which are not yet available.
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Summary

Summing and separation of the ARIMA stochastic processes, used in description
of the subsoil properties, have been discussed in the paper. Autocovariance functions
of the sum of the component processes and the resultant process have been compared
in order to find formulae relating the parameters of the components and the resultant
process. A special attention has been drawn to extract a white noise of measurement
errors from the resultant process assuming that the resultant process is a sum of simple
AR(1) processes and that white noise.

Numerical experiments have been performed and described so as to verify the ac-
curacy of theoretical formulae when applied in practice — estimates of the parameters
used instead of exact, theoretical values.

Streszczenie

W pracy przedstawiono sumowanie i rozdzielanie procesow stochastycznych ARIMA,
ktorych uzywa sie do opisu wlasnosci podloza gruntowego. W tym celu poréwnano
funkcje autokowariancji proceséw sktadowych i wynikowego w celu znalezienia wzo-
réw wiazacych parametry proceséw sktadowych z parametrami procesu wynikowego.
Szczegdlny nacisk polozono na wyodrebnienie bialego szumu spowodowanego przez
bledy pomiaréw przy zalozeniu, ze proces wynikowy jest suma procesu AR( 1) i tego
bialego szumu.

Wykonano eksperymenty numeryczne, ktore opisano w celu weryfikacji wzoréw te-
oretycznych stosowanych w praktyce, estymaty tych parametréw zastapily tu wartoéci
teoretyczne.



