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Application of finite-difference method to
modelling of the spreading of chemical pollutants
in the aeration zone

1. Introduction

The process of contamination migration in a one-dimensional porous medium can
be expressed by the hydrodynamic dispersion equation:

—6(69; p5) _ % (GD,S—: = qc') = pwle = pspS + 1l + 15p (1)
where:

c - contamination concentration [ML™3],

S — adsorption isotherm [M M~!], accepted as S = k ¢, k = const,

D, - dispersion coefficient [L? T-!],
. q - flow of liquid g =v+ 8 [LT"1],

p - soil bulk volume [ML-3],

ftw, ts — constants characterising substance decay in the medium’s liquid and

solid phases [T~!],
Yw,7s — constants characterising substance formation in the medium’s liquid

and soild phases [T™],
z,t - variables: spatial [L], temporal [T].
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In this equation, the dispersion coefficient is made to depend on bulk humidity - 8
and the speed of liquid flow in the soil — v (Maciejewski 1984):

D,=(—al+bv+d, a,bd— constants.

There is an initial condition imposed on the equation’s solution:
C(Z!O) - CP(Z)! (0 <z< L)s
and the following boundary conditions:

Dirichlet — ¢(z.,t) = ci(t), (t > 0),

Neuman — ¢.(t)= (—D,G i +v6 c)
0z

or % (L,t) =0,

where: I — thickness of considered soil profile,
z,=0 or 2z,=0L.

An approximate solution of the hydrodynamic dispersion equation is possible pro-
vided we know the flow speed field v and values of humidity 6. Most often, they are
determined with the help of the Fokker-Planck (diffusion) equation (Vauclin et al.
1979). For this purpose, the created model assumes a convergent and stable differential
scheme with constant or variable space interval (Samarskij 1984).

In order to attain an approximate solution of the hydrodynamic dispersion equation,
the formula was converted to reach the form:

de 0 dc dc
ra—a (BD,(G,U) Ez-)—qa—,uc-irﬂr (2)

where:
r=0+pk, p=putppk, 7=r00+7%p

utilising the continuity equation for liquid flow.

The paper submits the methods for the approximate solution of so-formulated issue,
know from literature, as well as some methods worked out by the author. For this issue,
it is essential to choose an appropriate computation algorithm due to the influence
of a so-called advection term occurring in the equation. If the issue’s approximation
method is inapt, there often occurs a phenomenon of approximation solution oscillation
or impulse broadening in the numerical dispersion process.

Another crucial item is the selection of a method depending on the values displayed
by the parameters in this equation and also on digitisation of temporal and spatial va-
riables assumed when coming upon the approximate solution. The paper submits the
following methods for solving the issue: a globally stable differential scheme elaborated
by the author, the van Genuchten (1974) method (most often made use of in prac-
tice), the Galerkin-Pietrov method. Presented are also two new methods: a modified
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Galerkin-Pietrov and an algorithm solving after introducing co-called migratory coor-
dinates. These methods will be compared referring to their accuracy, the occurrence
of oscillation and numerical dispersion for different space and time intervals. For this
purpose, the analytical solution of issue (Bear 1972) was utilised:

dc 0% dc
- Dam Ve

imposing the following conditions in the solution:

o(z,,0) = Myo(2,), 0(2,) — delta function
Jim ofz) =0, ] o(z,t)dz = M,;

The solution is made up by the function:

e(z,t) = ¥ (z = vt)*
WS JixDiE TP aDg

Accepted were the following values of the parameters, selected in order that the
above-cited effects manifest themselves the more markedly:

M, =0.1998, D,=177.144, ¢=288, L=70, 8=0.5,

proces time 0.042.
Figure 1 displays the initial condition and the result after the process, adopted for the
comparisons.

........................................................

0.00 0.97 1.73 z.60 3.47 %.33 §.20 €.07 §.93 7140t

Fig. 1. Analytical solution of the hydrodynamic dispersion equation
Y initial condition
+ concentration after the process
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2. A characteristic of the approximate solutions of the
hydrodynamic dispersion equation

When constructing the approximate solutions of the hydrodynamic dispersion equa- -
tion, equation (2) was made use often. The following notations were introduced:

Uu; = u(z;,t_,-), u; = u(zg,t_,-+1),

where: for the schemes with constant space digitisation interval z; = i * dz, t; = j * df,

or z; = 2 dz;  for the approximation with variable space interval,

dz;,dt - space and time digitisation interval, respectively,? =0,1,..., N,
i=01,...,M,
Aul- = (u,-+1 — u,—), Vu,- = (u.- - ‘U-,'..l), Azu.- = A(Au.-),
ki = 0;D,(6:, ), ki = k‘_"'ﬂ k= ﬁi’i—l,
2 2
A= ki A& k V&
i T8 s, 2 A’
ri = 0; + pk, pi = gl 4 papy %+ vubi + Yo,

2.1. Approximate solution of the dispersion equation, obtained using the
differential scheme method

Let
gt =0.5(—d + |6]), ¢ = —0.5(: + |dl),

_ 1 e dzlé‘\,l
K = TR where R; = T

Then, equation (2) can be approximated as follows:

<

é,' — G Kq % k
AR aa+ L g
fori=1,2,...,N-1.

This approximation is stable regardless of the flow direction. The oscillations do
not occur either. Unfortunately, should the flow values markedly exceed the dispersion
coefficient, there manifests itself an influence of the numerical dispersion process in
the obtained solution. This effect is exemplified in Fig. 2, compared with the above-
-presented analytical solution.

Ay g K
2

¢ 2
o — WG+ (3)

dz

2.2. Approximate solution of the dispersion equation according to van
Genuchten (1974)

In this case, the approximate solution of the transport equation was worked out on
the grounds of the Galerkin method, utilising linear base functions. Using this method,
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Fig. 2. Method 1 — based solution of the hydrodynamic dispersion equation
Y initial condition, 4+ concentration after the process,
O solution according to the scheme (3)

equation (2) might be approximated as follows:

(1 &p—cin 2&—c 1 &a—cia) _
"(6 & 3@ ‘6 & )
B 1 N 1 ‘ Vé Vg . .
= 55 (&) + 57 (Ac) = 5= — 5 — widi + % W

fori=1,2,...,N-1,
where: in the differential operator Ac;, the dispersion coefficient’s value is increased by
2
q*dt
66°R" . : : ",
respective time range. The results obtained for so-constructed algorithm do not exhibit

an influence of numerical dispersion, however there occurring considerable oscillations
of the approximate solution, the greatest at big values of gdz/(6D,). This effect is
exemplified in Fig. 3, compared with the above analytical solution.

The author also analysed the case of the right term of equation (2) approximated
like in scheme (3). Unfortunately, in this case the obtained results retained the features
of scheme (3).

, where R = r/0, whereas in the operator Aé;, it decreases by this number, at the

2.3. Approximate solution of the dispersion equation — the
Galerkin-Pietrov method

The Galerkin method’s modification Pietrov suggested consists of introducing an
o — coefficient, which brings about a change of the base function form, from linear
into square. Practically, in the la.ngua.ge of differential schemes, the idea lines in a

dc
different a.pproxamatlon of the 5 derivative and a modification to the‘“c'it derivative
a.pproxlma.tion. The necessity to avoid oscillation requires that, for ¢ > 0.0, the a—:
. Ve coi e s P
dc VC‘S Ve _cGn—6a A

dz 2dz 2dz’

derivative be approximated as follows e
introduced a — coefficient thus corrects this approx1mat10n
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Fig. 3. Method 2 — Based solution of the hydrodynamic dispersion equation
Y initial condition, 4+ concentration after the process,
® solution according to the scheme (4)

Ve; — Cit1 —Gi-1 aV’c,-
dz 2dz 2dz

Utilising this method, equation (2) was approximated as follows:

r'_((l+g) C;+1—Ci+1+gci—ci+(l_2) Ci—l—ci—l)=

6 4 dt 3 dt 6 4 dt
oy &1 — i A% B
= :;i; (AC,) q ( 2dz « 2dz HiCi -+ Y5 (5)

fort=1,2,...,N—1.
It is essential here to select appropriate value of . In paper (Fletcher 1984), the
problem was subjected to an analysis. The authors suggest accepting the following

value:
a=cthf—1/8, where = gf—f;:

or a=1-1/8, for great values of 3.
The analysis was carried out in a steady problem situation. On the other hand, for
unsteady problems, they suggest accepting a = /3. The approximate solutions of the
dispersion equation obtained by means of this method exhibit the same features as
approximation (3), being more accurate however. The further analyses assume the

value a = /3.

2.4. Approximate solution of the dispersion equation — the
Galerkin-Pietrov method modified

In paper (1979) Griffiths and Mitchell generalised the Galerkin-Pietrov method
for unsteady problems. This was done by introducing three parameters, oy, az, as,
modifying the linear base functions. The application of this method to equation (2)
approximation leads us to the following differential problem:
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| (o3 — a2\ Giy1 — G ™ Gi—¢ 053+ﬂz)3-'—1—¢-'-1 _
r(( 2 ) TR +( 2 dt )“

A?“.

_ Logas  fGa=gy G\ _ s
—-dv—z(AC,) Q( 2dz (231 2d2’) i + iy (6)

fori=1,2,...,N—1.

This computational scheme is, assuming ; = az = 0 and a3 = 1/3, the on of Galerkin;
whereas for a; = 0.5a; and a3 = 1/3, it is scheme (5), obtained by means of the Galer-
kin-Pietrov method. The numerical experiments accomplished using this scheme for @
_gdt
60dz
which is suggested by paper’s authors, allow for stating the obtained results ha.rdly
differ from the solutions attained with the help of the Galerkin-Pietrov method. The
scheme’s form nevertheless permits undertaking an attempt to select such values of the
o, a2, az — parameters that the properties of the solutions obtained can be improved.
The simulations accomplished for different alues of the parameters occurring in this
problem made the selection of such values possible. It was accepted that

_ qdz Tqdt _
al—tanh (GTD,), ta.nh(ﬁ dz ) g—lagi.

The solution obtained using this scheme is exemplified in Fig. 4. Accepted were the
same values of dt,dz as those when computing the solution displayed in Fig. 2.

— values as in the Galerkin-Pietrov method and a; = 0.5a; and a3 =1/3 +

000 P0G
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7100t

5.60
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Fig. 4. Method 4 — based solution of the hydrodynamic dispersion equation
Y initial condition, + concentration after the process
B solution according to the scheme (6)

2.5. Approximate solution of the dispersion equation —introduction of
,migratory coordinates”

The above-mentioned methods for an approximate solution of the hydrodynamic
dispersion equation did not bring about a change of the equations’s form or the values
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of the parameters it includes. Hence the problem of the influence function ¢ exerted
on the solution remained unchanged. Any operation done in the above methods was of
technical character. Therefore it seems crucial to undertake an attempt which, owing
to an appropriate transformation, would diminish the influence of the advection com-
ponent on the equation or even eliminate it.

Let
C(z,t) =c*(y,1),
where
2. o q(z,7)
&= W== jﬂ(zr +pk M
(2,7)

Let us denote f(z,t) 6 m

Since the problem obtained after the transformation will be solved applying the method
of two-ply differential schemes, it is possible to assume |f(z,t)| < 1, hence the transfor-
mation applied is correct. In the computational algorithm worked out, this conditionis
verified and, in unfulfilled, the dt value is corrected accordingly.

It was accepted that what we looked for was the solution of equation (2) with the
following initial-boundary conditions system imposed on:

c(z,0) = ¢p(z), (0<z<Z1L),
Dirichlet — ¢(0,t) = ei(t), (t > 0),

Neumann — ¢.(t) = (—D,ﬁ % + vﬂc)

z=0
= (Lt)=1,
z
and assuming the values of the flow function ¢ meet the conditions
q(0,¢) 20, q(L,t)=0
Having applied the above-defined change of variables, equation (2) can by presented

as follows:
c* a » a -
rre(ro:5) - (- (B) o) G -we vy ©

where: u“‘(y,f) is u(z,t) - dependent variable, calculated according to the new coordi-
nates.

In equation (8), the convection component depends on the value and derivative of
function f*, hence its value does not depend on the flow but only on the fluctuations
this function displays. When considering steady flows, i.e. when ¢ = const and 0 =
const, equation (8) is reduced to the form
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Lo _ 0 (. 0\

However, solving equation (8), we are obliged to introduce differential diagrams with
a variable space interval. To do this, utilised was the method submitted in 2.1.
Let

. =05 (_ ...dyn(f k*f“)

- +2|mﬁ—wﬁﬂ,

—05 (.;dyl+l(f_ k- u) 2|q |(f k'f"))
dy

@:lG” A- * ral  __ af
a- fyky G =GR =k, 1 ‘(&)

Then, equation (8) can be approximated as follows:

_ - _
K = TTER where R; =

r,c‘—c o x;( )+ tkr Ay g kVeE
¥ dt = ag'- k‘ 2 dy,+1 k: 2 d

e (9)

— kA& Ve . .
H §= .5d,‘ d,’, Aé; = — —e——, =1,4,..., — 1.
where: dy; = 0.5(dyiy1 + dyi) & B T 5 fori=1,2 N-1

In this case, the solving of the system of equation (9) is the final stage of the
entire algorithm, which has been divided into two parts depending on the flow value
q(0,t). The one, simpler case is to be dealt with when ¢(0,¢) = 0. Then the number of
digitising grid nodes along the spatial variable increases by one at each time range. In
order not to cause an excess, in plausible cases (a cumulation of the grid’s nodes in the
environment z = L), it is possible to withdraw the last but one node of the digitising
grid there form. Before starting to solve the system of equation (9) in the elaborated
algorithm determined are values of z-variable appropriate for the accepted digitisation
of variable y the values of variable z at a new time range (n — 1 equations have to be
solved). This permits determining the values of the parameters which occur in equation
(9) and transforming the boundary conditions.

The presented method is definitely more time-consuming referring to its computa-
tions, yet the obtained approximate solution of the dispersion equation do not depend
that substantially on the flow values. This is especially visible when compared with the
analytical solution with the help of which the other methods were tested. The appro-
ximate solutions obtained by means of this method are practically identical with the
analytical solutions. The numerical experiments accomplished according to this algori-
thm, however, make us justified to say that once the diagram’s space and time intervals
have been chosen incorrectly, there might occur noticeable errors in the approximate
solution. These errors are caused by a great variability of the space interval assumed a
priori and the one determined by the algorithm during the simulation.
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3. A comparison of approximate methods for integrating the
dispersion equation

The five submitted methods for attaining the approximate solution of the dispersion
equation have been mutually compared using the analytical solution presented in the
Introduction. The following measures characterising the occurring approximation error
have been taken:

- correlation coefficient r

&
— relative integrating error Bc = [ lﬂ‘&:ﬂda:
o

- N
— mean square deviation error Bs = ¥ (¢, — ¢,)?
i=1

where:
¢, — is the analytical solution,
¢, — is the approximate solution.

The analysis of the submitted methods correctness was two-staged. At a fixed process
time and the interval of spatial digitisation dz = 0.5, changed were the values of the time
interval, The cases considered referred to 6, 12, 24, 36, 72, 144 time ranges. The results
are presented in the subsequent figures. Fig. 5 displays correlation coefficient values,
whilst Figs 6 and 7 - the relative integrating and the mean square errors, respectively.
The subsequent analysis concerned the correctness of the presented methods in case

.78
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0.29 0.9% 1.71 2.47 3.22 3.98 +.73 5.43 6.2% 7408

Fig. 5. The correlation coefficient for different solution methods
+ corrected diagram, = van Genuchten,
x Qalerkin-Pietrow, ¢ migratory coordinates,
O G-P modified

the space interval values change, at fixed process time and fixed interval of temporal
digitisation, i.e. 24 time ranges. Considered were 5 cases, for dz = 0.125, 0.25, 0.5,
1.0, 2.0. The results are presented in the subsequent figures. Fig. 8 displays correlation
coefficient values, whilst Fig. 9 - the relative integrating error. What we abandoned
here was the mean square error as it is very similar to the integrating error.
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Fig. 6. Relative intergrating error for different solution methods
+ corrected diagram, m van Genuchten,

x Galerkin-Pietrow, ¢ migratory coordinates,
O G-P modified
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Fig. 7. Mean squere error for different solution methods
+ corrected diagram, m van Genuchten,
x Galerkin-Pietrow, ¢ migratory coordinates,
O G-P modified
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Fig. 8. The correlation coeflicient for different solution methods
+ corrected diagram, m van Genuchten,
x Galerkin-Pietrow, ¢ migratory coordinates,
O G-P modified
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Fig. 9. Relative integrating error for different solution methods
+ corrected diagram, m van Genuchten,
x Galerkin-Pietrow, ¢ migratory coordinates,
O G-P modified
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4. Conclusions

The first four methods presented in the paper, more advantageous because of the
computation time, permit obtaining the best results when the value +/2D,dt is greater
than the value |v * dt| which occur in the process, or il a long time of contaminating
is considered. In these cases, the numerical dispersion does not affect the solution that
much, but it is only oscillations found out to occur in some of the methods (pt 2.2) that
force us to choose a small time interval. In the analysed example, the method proposed
by van Genuchten and Wicrenga, the oscillations vanished only after assuming 144
time ranges for the considered process time. In such cases, the method of the so-called
,migratory coordinates”, of little effectiveness due to its computation time yet very
accurate, becomes a tempting proposal. The Galerkin-Pictrov method, its modified
version or the van Genuchten-Wicrenga method, as the methods utilising correcting
parameters entered a priori, always require a detailed analysis of the process’s parame-
ters. This is necessary due to the possibility of the approximate solution’s oscillation,
as it took place in the example presented in Fig. 3.

While carrying on computer simulations of long-lasting processes of contamination
Lransport, it is essential to choose the proper computation method in relation to the
parameters of simulated process. The factors substantially conditioning simulation cf-
fectiveness are the accuracy of the calculations and their time. The analysis ol the
cffectiveness the five methods exhibit, carried out in this paper, permits making such

a choice for the process’s parameters accepted in this example.
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Summary

In the paper we apply the finite differences method for the approximate solution of
one dimensional hydrodynamic dispersion equation. Five various algorithms arc inve-
stigated. The accuracy analysis of the solution for dilferent steps of the time and space
are presented. Obtained solutions are compared with the analytical one of the lincar
dispersion equation. We accept three measures of approximate deviations:

— correlation coefficient,
- integral relative error,

— sum square deviations.

On the base of measures analysis we can accept algorithin, time and space steps for
the best approximate solution of the one dimensional hydrodynamic equation.

Streszczenie

W pracy zastosowano mectodg réznic skoniczonych do przyblizonego rozwigzania
jednowymiarowego zagadnicnia dyspersji hydrodynamicznej. Poddano badaniom pige
roznych algorytmow rozwiagzania tego zagadnienia. Analiz¢ doktadnosci przyblizonych
rozwiazan przeprowadzono w zaleznosci od przyjelej dyskretyzacji zmiennej czasowej i
przestrzennej. Otrzymywanc rozwiazania przyblizone porownano z rozwigzaniami ana-
litycznymi zlinearyzowanecgo réwnania dyspersji. Przyjeto nast¢pujace miary charakte-
ryzujace blad przyblizenia:

- wspolczynnik korelagji,
— wzgledny blad calkowy,
- sumg odchylen kwadratowych.
Otrzymane rezultaty i sformulowane na tej podstawic wnioski umozliwiaja dobér algo-

rytmu oraz przyjecie dyskretyzacji zmienne] czasowej i przestrzenne] w zaleznosci od
zmicnnoéci parametrow rozpatrywanych zagadnien.



