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Turbulent Flow Around a Cylinder

1. The problem formulation

The paper deals with determination of horizontal, averaged in time, ficlds of velocity
and pressure in a real fluid, forming a steady turbulent stream around a motionless
cylinder with vertical axis. The text is of methodical and inspirational character and
is a continuation of the paper (Sawicki 1984).

The problem, which has been solved by means of approximated method of serics
expanding, is not a new idea. In the bibliography one can find many papers, both
experimental and theoretical, devoted to description of the phenomenon characteristics.
However analytical description of the flow around a cylinder can be obtained only
in laminar case or under some simplifications (e.g. plane potential flow (Lojcjanskij
1973)). Equations for turbulent conditions of flow are solved by means of numerical
methods (Gryboé 1989) and in consequence it is not possible to apply these solutions
in analytical considerations.

It would be very purposeful to have at one’s disposal a simple but efficient method of
receiving analytical formulas, describing not only a flow around a body, but also other
problems of hydrodynamics. It seems that especially promising impression makes the
method of series expanding, applied in this paper.

The velocity vector in the case under considerations has two components:

u = u,e, + ugey (1)

while the boundary conditions can be written as follows (Fig. 1)
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Taking into account the form of the equation of mass conservation we can define the
stream function :

109 0y
W= B T By (3)

Eliminating by means of differentiation the pressure from the Navier-Stokes equations
(Lojcjanskij 1973) and making use of Eq. 3 one can obtain:
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2. Determination of Reynolds tensor 7

The selection of the turbulence model is very important element of the task
formulation. The problem under considerations has rather simple geometrical charak-
teristics, so it is possible to make use of results of comparative study (Piwecki, Sawicki
1986-1987, 1988-1989; Sawicki 1989). In this paper the diffusive model of turbulence
has been choosen, when the Reynolds tensor is a linear function of averaged strain rate
tensor S:
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The problem shows an axial symmetry, so according to the Wang’s theory (Sawicki

1989) one can expect that the phenomenon will prove the transversal isotropy. This
feature yields the following form of constitutive equation 7(S):

p —2/3pk‘ + 2#1'5,.,-
mop = —2/3pk + 21 Spg
Trg = QP!TSrB

(6)

where: k - kinetic energy of turbulence. The coefficient of turbulent viscosity has been
described by means of algebraic formula (Piwecki, Sawicki 1986-1987, 19881989):

(u? + ug)®

pr=0.037 p RU g

(7)
3. Determination of velocity field

The problem has been solved by means of the series expansion (Michlin, Smolicki
1972; Sawicki 1984). It was assumed that the solution of Eq. 4 can be expressed by the
following series:

UR |2r
R R

Rz " N r n+2 r . 0 s
;bNT ——-—3+r—2] sin +nz=:1/1n (———1) exp(—ﬁ)sm[(n-kl) ] (8)
which obeys boundary conditions (2). Calculations were performed for N = 1 (as it

was done in (Sawicki 1984)). The coeflicient A; has been found by means of the least
square method, from the following condition:

aJ 7]
S = a—A]jL(’l}‘))dD =l (9)
D

The operator L is given by Eq. 4, and the integration area is a part of the surface (r,0),
for which r > R.

Substituting (5, 6, 7) into (4) onc obtains rather complex expression, so only the
integral along 0-axis has bean calculated analytically, whereas the integral along the
r-axis was calculated numerically, what yielded the expression:

e Re Re?
88.08 2149.2 19.67  720.0
- B(12+ T4 ) + (000 4 ) =0 (10)
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where:
E=A/UR ; Re=2UR/v (11)
The solution E(Re) of Eq. 10 has been approximated by the function:
A 16.35
E= UR = = 0.67 + e (12)
what gives the following stream function:
2
P = UR[——3+£)sin9+
16.35 T o ry .
+ UR [o 67+ [Tz " 1] Gkp (—ﬁ) sin 20 (13)

The velocity field is described by Eq. 3.

4. Determination of turbulent pressure

The term ,turbulent pressure” denotes the sum of averaged presure and isotropic
part of turbulent normal stress (Piwecki, Sawicki 1986-1987, 19881989):

Pe=p+2/3pk (14)

The distribution of p. is given by the Helmholtz equation, which can be obtained from
the Navier-Stokes equation (Sawicki 1984):
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Assuming that the function p. can be described by the series:

Pe=Po +,£:1 M, (%)n—2 exp (—%) cos[(n + 1)0] (16)

the following value of the coefficient M, has been obtained (N = 1, the least square
method):
30.79 5324.9
= —plJ? s 17
M, = —pU [159+ i (17)
The turbulent pressure is described by the formula:

30.79  5324.9 2 r
Pe = po — pU* [1.59 + e =+ W] (%) exp (_"R‘) cos 20 (18)
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5. Determination of drag coefficient

The force acting on the cylinder (related to the unit of its length) is given by
the following integral (Lojcjanskij 1973):

2
1 Ou, Ous ug\ .
We R [-pooss—p(L By 2w
J [ pecosl — p (r T - ) smﬂ] _Rdﬁ (19)
which after calculations gives:
27.22 3077.8
— pRU? ( g 2 ——)
W = pRU*|0.92 + e + Re? (20)
The drag coefficient is defined as a ratio of the drag force and hydrodynamic thrust:
Cp = W/pRU? (21)
Substituting (20) in (21) we have:
27.22  3077.8 '
CD_0'92+F+W (22)

6. Discussion

Results obtained in this paper have been presented graphically. The velocity
distribution is shown in Fig. 2, as a diagram ug = f(y/D) for z = 8D, where up is a
normalized velocity:

U —uz(z,y)

U—uz(z,y=0)

The dashed line in this figure shows experimental data, taken from the paper
(Kovasznay 1948/1949). Experiments have been carried out for Re = 56. Comparison
of both curves enables us to state, that calculated velocity distribution shows mixed
conformity with experimental results. This conformity is acceptable in the region of
the 0z-axis, but is getting worse when the variable y/D is increasing. It can be seen
that calculated spread of the wake behind the cylinder is greater than observed one.

As a second parameter the drag coefficient has been analysed. The full line in
Fig. 3 shows the relation Cp(Re) according to Eq. 22, whereas experimental data
after (Walden, Stasiak 1971) shows the dashed line. The consistence of both curves for
Re > 100 is apparently better than in the previous case, what confirms the statement
presented above, that the calculated velocity profile is better related to the real one
near the wall. A big disaccord of both curves in Fig. 3 for low Reynolds numbers (Re <
100) is self-evident, as the model under study does not refer to the laminar flow.

Reassuming, comparison of calculated and measured results does not speak very
well for the model presented in this paper. However one has to remember that this mo-
del is simplified (transversal isotropy has been assumed) and the equations were solved
by means of approximated method. Taking into account that the paper is of methodo-
logical character, the qualitative conformity of obtained and experimental results leads
to the conclusion, that it is purposeful to continue efforts in this direction.

The paper has been written under support of the Polish Central Program of Fun-
damental Research CPBP 03.09.3.06.

(23)

Uup =



20

J. M. SAWICKI

calculated

curve

Fig. 2.
‘ 1aCo
7t
W
5 Co—sr
D RgU
5 L
L
formu'a {22)
- 3 E S
\-h
2+~ - experiment [8)
1 S~
: " — ; 8 9 m———
-1 P2 3 4 f 5 6 =
-
ReﬂOG
21

Fig. 3.



TURBULENT FLOW AROUND A CYLINDER 21

References

Grybos P., (1989), Podstawy mechaniki plynéw, PWN, Warszawa.

Kovasznay, (1948/1949), Hot-wire investigation of wake behind cylinder at low Rey-
nolds number, Proc. Roy. Soc.

Lojcjanski L. G., (1973), Miechanika zidkosti | gaza, Izdatielstwo Nauka, Moskwa.

Michlin S. G., Smolicki C. L., (1972), Metody przyblizonego rozwigzywania réw-
nan rozniczkowych i caltkowych, PWN, Warszawa.

Piwecki T., Sawicki J. M., et al., (1987-1987, 1988-1989), Modele transportu i
wymiany masy i ciepla w przeplywach dwuwymiarowych nieustalonych w rze-
kach i zbiornikach, Sprawozdanie z badan, Politechnika Gdariska, Gdansk.

Sawicki J. M., (1984), Przyblizone rozwiazanie zadania stacjonarnego oplywu walca
kolowego metoda najmniejszych kwadratéw, Archiwum Hydrotechniki 1-2.

Sawicki J. M., (1989), Konwekcyjny model tlurbulencji przysciennej, Zesz. Nauk. Po-
litechniki Gdanskiej, Budownictwo Wodne 30.

Walden H., Stasiak J., (1971), Mechanika cieczy i gazéw w inzynierii sanitarnej,
Arkady, Warszawa.

Summary

The paper is devoted to the problem of mathematical modelling of velocity and pres-
sure fields for steady turbulent flow around a cylinder. The governing equations have
been formulated and solved by means of the mean-square method. Eddy viscosity has
been described by algebraic formula (7). The results are compared with experimental
data.

Streszczenie

Praca poswiecona jest przyblizonemu okresleniu pola predkosci i cisnien dla stacjo-
narnego turbulentnego optywu cylindra. Sformulowano réwnania zachowania i rozwia-
zano je metoda najmniejszych kwadratow. Wspolczynnik lepkosci burzliwej okreslono
wzorem algebraicznym (7). W oparciu o otrzymane rezultaty wyznaczono wspotezynnik
oporu cylindra. Wyniki obliczen poréwnano z materialem eksperymentalnym i przea-
nalizowano.



