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1. Introduction

One-dimensional flow of Newtonian fluid in a free-surface system can be described
by so—called de Saint-Venant equations (Eqs 4, 5). These equations, the manner of
initial and boundary conditions formulation and the solving process are broadly pre-
sented in the bibliography and can be regarded as a complete tool of one-dimensional
hydraulic problems description.

However, there exists a demand for similar methods in different branches of science
and technology. For example, one can enumerate free-surface systems in chemical en-
gineering, or underwater landslides, especially interesting in geotechnics.

These phenomena very often have the same kinematic characteristics like open
channel flows, but the problem lies in the different physical properties of flowing me-
dium (e.g. wood pulp in paper industry or liquefied flotation tailings), which shows
non—Newtonian features.

The problem bibliography does not contain credible equations which could describe
the phenomena mentioned above. Practical problems are usually solved under assump-
tion that the Newtonian model can be accepted in the case under study (Hughes,
Brighton 1967), or by means of rheological models, but with some simplifications (e.g.
for quasi-steady case (Jeyapalan 1982).

It seems that hydraulics and hydromechanics are obliged to formulate proper rela-
tions, which could describe one-dimensional unsteady flow of non-Newtonian medium
in free-surface systems. Paper is devoted to this question.
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Notation
B - the channel width
C — Chézy coefficient
i ~ unit mass force
Fr - Froude number
g — gravitational constant
h - water depth
i - bottom slope
m - Manning coefficient
n — material constant
P - unit surface force
o, — bottom shear stress
P - stress tensor
P, - yield stress tensor
Q — discharge of fluid
r - coordinate
R - radius
Ry — hydraulic radius
- cross-section area
ot — time
u — mean velocity in a cross-section
uP,u® — mean velocity after power law and Bingham models respectively
W - wetted perimeter
T - coordinate
- material constant
— Nikuradse coefficient
I - dynamic viscosity
Py — plastic viscosity
v — kinematic viscosity
p - fluid density
o — fluid surface

—  fluid volume

Ty — component of the yield stress tensor
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2. De Saint—Venant equations for Newtonian fluids

The starting point is determined by the equation of mass conservation, according
to which the mass of fluid contained in the fluid volume 7 does not change in time:

%]pd‘r:ﬂ (1)

T

and linear momentum conservation law (which states that the velocity of linear mo-
mentum change is equal to the resultant force which acts on the fluid volume 7):

%fpgd‘r:/pid‘l’-}- fgdcr (2)

In consideration of the geometrical specifity of free-surface streams it is very convenient
to choose the volume element dr as a part of a ,slice”, cut out in the stream by two
succesive cross-sections (Fig. 1):

Fig. 1.

dr =dS dz (3)

In this manner we can introduce mean parameters of the flow, averaged in the stream
cross-section. Detailed derivation of governing equations can be found in the problem
bibliography (e.q. Puzyrewski, Sawicki 1987; Yevjevich Mahmood 1975), so in this
place we can present only the final form of de Saint-Venant system (for the channel of
constant width B):
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The system (4,5) is valid for each continuous liquid. Differentiation of specific medium
can be performed by proper choice of function p,. The way in which this function was
introduced for Newtonian fluids is very important for further considerations, so we
must present it in details.

In order to calculate shear stress p, it is necessary to determine the flow velocity
and pressure field, what is possible only in special, simple cases. Especially useful is
the classical Hagen-Poiseuille solution, according to which velocity profile of steady
laminar flow in semicircular open channels is of a parabolic character (Fig. 2):

us(r) = % (i —+) (6)
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Fig. 2.
The latest equation makes it possible to determine the mean velocity:
i, R?
% =u(z,t) = £ (7)

The bottom shear stress p, can be found be means of Newton hypothesis:

_ Oug(r) _ pgi.R "
pr= + & = 8 (8)
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Replacing the bottom slope i, in Eq. 8 by the mean velocity u(z,t) (Eq. 7) we have
instead of Eq. 8:

pi(a,) = 242:0) ©)

However so regular channels and uniform flow conditions occur very seldom in practice.
Usually we have to do with turbulent flows in natural channels of complex shapes. In
order to widen the range of Eq. 9 applicability we generalize this relation, replacing
the radius R by hydraulic radius Ry:

R=2Ry (10)

and introducing coefficient ) (after Nikuradse), what makes possible to write the fol-
lowing formula:

2

pu
== B 11
p 3 (11)

The coefficient A for free-surface flows can be replaced by classical Chézy coeflicient,
according to the formula:

8¢
what leads to the relation:
¥
Pr= %_ (13)

Non-uniform steady flow (when 8/8t = 0 but 8/dz # 0) is described by the equation
of so-called swelling curve (Puzyrewski, Sawicki 1987), which can be obtained from Eqgs
4,5 and has the form:

Q = Bh(z) u(z) = const. (14)

dh(z) i, —u?/c*Ry
dz T T 1_Frt {15]

where the Froude number Fr is defined as follows:

u Q
FT:J—EE=W (16)

In the simplest case of steady uniform flow we have Chézy (or Manning) formula:

v O/l = % R i (17)
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3. Rheological models selection

There is a serious amount of different rheological models. Accordimg to some sugge-
stions presented in the problem bibliography (e.g. Hughes Brighton 1967; Schowalter
1978) two families of non-Newtonian fluids can be useful in our considerations, namely:

- power law fluids;

- Bingham plastics;
(it is necessary to underline, that the argumentation presented below can be applied
for each other medium).

In the first case the constitutive equation, which links the stress tensor P with shear
strain rate tensor D is a nonlinear relation:

P = kD" (18)

where the values of material constants (x and n) depend on the type of considered fluid
and dimension of x contains the value of n (e.g. [k] = N sec™ m~?).
For Bingham plastics in turn the constitutive equation has the form:

P=PFP,+ppD when P> P, } (19)

D=0 when P < P,

when P, and pp must be determined experimentally for analysed medium.

4. De Saint—Venant equations for power law fluids

According to the way of acting described above, in the first order one has to solve the
problem of laminar flow in semicircular open channel (Fig. 2). This solution is known
in the bibliography (e.g. Hughes, Brighton 1967) and is described by the function:

. 1/n
ey By) T -rF] )
The mean velocity for this case is given by the formula:
oy SO . I (Pﬂfo)”" i (21)
& In+1 2

Velocity profile in non-dimensional coordinates:

uf(r/R) 3n+1

=t - /R (22)

is shown in fig. 3. Shear stress on the channel bottom according to Egs 20, 21 can be
expressed as follows:

r = o240

B 3n+1 uP]"
Pr =K ar

= (23)

=K

r=R
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Fig. 3.

For optional cross-section of the stream we can replace the radius R by Ry (Eq.
10) and we obtain the following form of de Saint-Venant system for power law fluids:

P
ok (k") _

ot dz (24)
duf oh : K 3n+1 uP\"
7+g g—gto—m (———n_ —E) (25)

These equations refer to the laminar flow, but considering that the flow of liquefied
sediments (and similar mediums) very often has creeping character it seems that just
this case is especially interesting in practice.

For steady non-uniform case we have from Eqs 24, 25:

P __ _K 3n+t1 uf i
dh(z) _‘to~ pRy [ RH]

dz 1— Fr? (28)
while for steady uniform case we have the following analogon od Chézy formula:
3 1/n
In+1 K

5. De Saint—Venant equations for Bingham plastics

Velocity field of Bingham plastic laminar flow in semicircular open channel is given
by the function (e.g. Hughes, Brighton 1967):

uB(r) = P2 (R —+?) = L (R—1) (forrp<r <R) (28)
4pp pp
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2

B Ty 2
u, = — R -1 for0<r< 29
pgtopp( frp—1)" (for0<r<rp) (29)
where:
27,
rp = — 30
P~ bai, (30)

and 7, = P?" is a (z,r) — component of the yield stress tensor P, (Eq. 19).
According to the Bingham plastics definition the bottom shear stress is equal to:

_ PR

Similarly to the previously discussed case it is convenient to express the bottom slope
i, by mean velocity up, which according to Eqs 28, 29 can be written as follows:

- R?pgi 4 ( 21 1 ( 2r, \*
s O O B y = y
W =n () 8y l 3 \pgi.R +3 pgi.R [3)

When the term which contains the yield stress is relatively small, i.e. when:

27,

— &1 33
pgi. R (33)

one can linearize Eq. 32, what gives a simplified relation:

. 8upuf 8,
°" RPpg " 3pgR
Substituting the latter equation in Eq. 24 and taking into account Eq. 10 we have:

(34)

B _ 2ppu® _ 4

Finally we can write de Saint-Venant equations in the following form:

oh | o(hu) _ <

] 36
ot " ax )
duB oh . 2, g  Amy )
e = = Gto — K s 37
di t9 oz T (pR%I “ 3pgRy Y
For steady non-uniform flow we have an evident relation:
dh(z) _ io — 2upQ/(SpgRYy) — 47,/ (3pg Rir) (38)
dr 1— Fr?
whereas for steady, uniform case:
B = P9eRl _ 2R (39)

2up 3pp
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6. Examples

In order to present the influence of the constitutive equation choice on calculations
results, three models described above, i.e. the system (4, 5, 13), (24, 25) and (36, 37)
have been solved for the following initial conditions:

— Newtonian fluid (Eq. 17, m = 0.023, p = 1000 kg/m®)

t=0 — h(z,0)=10m
u(z,0) = 0.43 m/s

_ power law fluid (Eq. 27, n = 0.45, k = 1.6[Nsec®**m~?], p = 1600 kg/m?)

t=0 — hP(z,0)0=10m
uP(z,0) = 0.36 m/s

- Bingham plastic (Eq. 39, s, = 0.15 [kg/m sec], 7, = 1.05 N/m?, p = 1600 kg/m?)

t=0 — hB(z,0)=1.0m
uB(z,0) = 0.57 m/s

and with boundary conditions:

z =0—h(0,t) = hF(0,t) = hB(0,t) = f(t) - given function (Fig. 4)

z=L=1000 m—h(L,t) = hP(L,t) = hB(L,t)=1.0m

ft) A
[m]
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Fig. 4.

So formulated problem has been solved numerically (finite differences method, expli-
cit Lax scheme (Potter 1973), for linear channel (when Ry, = h). Obtained results are
presented graphically in Fig. 5, as free-surface profiles after At; = 25 sec, Atz = 50
sec, Atz = 75 sec (for i, = 0.0001).
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7. Conclusions

There is no sense to justify the usefulness of rheological models of fluids, but it
is purposeful to formulate a system of equations, which could describe the motion of
non-Newtonian fluid.

The essence of this paper lies in adaptation of mass and linear momentum con-
servation equations for one-dimensional unsteady flow with a free-surface, which are
known as the Saint-Venant equations. This adaptation has been carried out for two
types of non-Newtonian fluids, viz. for power law fluids and Bingham plastics. General
equations of unsteady, non-uniform flow have been derived, and then - equations of
the swelling curve and analogon of Chézy formula.

Relations obtained in the paper have been presented on an example of a simple
wave propagation. The analysis of calculated results leads to the conclusion that the
proper choice of adequate rheological model of considered medium is a very impor-
tant question. Although according to the theory of characteristics the velocity of wave
propagation (uy) in an open channel depends mainly on the stream depth, but the
effective velocity and especially the process of energy dissipation are closely related to
the character of considered medium, what can be seen in Fig. 5.
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Summary

The paper is devoted to the system well-known in open-channel hydraulics, of the
Saint-Venant equations, adapted for non-Newtonian fluids. These equations have been
derived for two different kinds of rheological models, viz. power law fluids and Bingham
plastics. An example has been enclosed, which presents the influence of the model choice
on calculated results.

Streszczenie

Praca poéwiccona jest dobrze znanemu w hydraulice koryt otwartych ukladowi réw-
nati de Saint-Venanta, ale odniesionemu do przeplywu cieczy nienewtonowskich. Row-
nania wyprowadzono dla dwéch modeli reologicznych — dla plynu potegowego i dla
plynu Binghama. Oméwiono postaé ogolna réwnan, a takze wazne przypadki szcze-
golne — przeplyw stacjonarny, niejednostajny oraz stacjonarny, jednostajny. Zalaczono
przykladowe rozwiazania.




