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The numerical presentation of cyclic shear strain
accumulation procedure and its modification

1. Introduction

In the last several years the interest in structures subjected to cyclic loading has in-
creased rapidly. It was mainly due to the necessity of a safe design of offshore platforms
resting on sea beds and subjected to cyclic loading from waves, wind and currents. The
static and cyclic loads cause in such conditions a very complex stress state in the
soil under the platform. The example of simplified stress conditions for a few typical
elements along a potential failure surface is shown in Fig, 1, (Eide et al. 1984). The
average shear stress 7, is composed of the initial shear stress 7, in the soil prior to the
installation of the platform and an additional shear stress Ar, which is induced by the
submerged weight of the structurs. The cyclic shear stress Tey is caused by the cyclic
load. In a storm, the wave height and its period vary continuously from one wave to
another, so the cyclic shear stress will also vary from cycle to cycle.

The mode of a soil failure during cyclic loading is quite different then in the case
of a static shearing. In the undrained conditions the cyclic loading causes an increase
in the mean pore water pressure and corresponding reduction of the effective normal
stresses and increased shear strains. When the effective stresses approach zero failure
by liquefaction occurs.

The shear strain amplitudes are usually used as a failure criterion. In practice
a double shear strain amplitude, i.e. the difference between the maximum and the

minimum values of strains in a single cycle equal to £3% or +£15% are regarded as a
failure.
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Fig. 1. Stress conditions for typical elements under the platform

The cydic shear strength for this failure shear strain is defined as the sum of the
average 7, and the cyclic 7, shear stresses at failure :

7y = (ra+Ta);s )

Generally, the cyclic shear strength depends on the stress path (e.g. triaxial or
direct simple shearing), stress history and type of soil. For given an OCR test type and
a soil, the cyclic shear strength becomes the function of the load history only and can
be expressed as a function of the number of cycles and the shear stress amplitude.

A real storm is composed of waves with varying heights and periods, and the soil
element beneath a platform is subjected to a cyclic shear stress which varies from
one cycle to another. Such working conditions should be simulated in a laboratory.
However, for practical reasons the laboratory tests are usually run with a constant
cyclic shear stress throughout the test, and the soil strength for a real storm loading
must be predicted from these tests. There are some procedures to do that, and one
of them, most common, was proposed by Andersen et al. (1978), the so-called cyclic
shear strain accumulation method. This method, its proposed numerical presentation
and a modification introduced by the author will be described below.

2. Cyclic shear strain accumulation method

The method is based on a cyclic shear strain contour diagram, which is constructed
from laboratory undrained cyclic tests run with a constant cyclic shear stress amplitude.
An axample of such a diagram is presented in Fig. 2. The procedure postulates that
the soil remembers the cyclic shear strain to which it has previously been subjected.

The cyclic shear strains are accumulated independently of the sequence of the ap-
plied load. The assumption implies that a cyclic shear strain amplitude increases mo-
notonously without regarding how succesive values of shear stresses vary. It seems to be
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Fig. 2. Cyclic shear strain contour diagram

justified especially for the load history with increasing cyclic shear stress amplitudes.
Such a load hxstory is presented in Fig. 3.
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Fig. 3. Load history in form of parcels

The cyclic shear strain after n + An cycles (Fig. 4) can be expressed as follows
(Eide et al. 1984):

Yemt+dn = Yo + A'h.An + A'h..’ . . (2)
where:

Vo - cyclic shear strain after n cycles for a cyclic shear stress amplitude
Tei
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A-yc,.-' — immediate change in a cyclic shear strain which is due to a change in
a cyclic shear stress from 7.; to 7e41

Avean — increase in a cyclic shear strain due to An cycles with a cyclic shear
stress Ten41

If the cyclic shear strain in the first cycle 4., and expressions for Av.; and Ay an are
known, the accumulated cyclic shear strain during a storm with varing wave heights
may be found by integrating equation (2). :

Practically, the integration is performed by using a simple graphical method. It
starts from the smallest cyclic shear stress amplitude 7. According to Fig. 3 there
are n; cycles with such an amplitude. Drawing this two values on the plot (Fig. 5a)
one obtains a cyclic shear strain 4, (point 2). Then increasing the cyclic shear stress
level from 7; to 72, and assuming that the soil remembers the previous shear strain,
transition to point 2’ takes place. However, when the cyclic shear stress is increased,
the cyclic shear strain will also increase. It is assumed as an approximation that this
increase is independent of the cyclic stress history and that it can be determined as the
difference in cyclic shear strains for the cyclic shear stresses 7, and 73, from the curve
for n = 1 (Fig. 5b). The increase is put on the diagram (Fig.5a) and it corresponds to
the distance 2'2".

The cyclic shear strain in point 2” can be found from the diagram. It corresponds
to the moment when the consecutive loading parcel starts with the cyclic shear stress
amplitude 7; and n, number of cycles. The cyclic shear strain in point 2" is equivalent
lo a strain which would appear if the smallest amplitude was 3 and a number of cycl:
in the first parcel was n.;, which is determined from Fig. 5a.

The sector 2”3 corresponds to the increment of a cyclic shear strain due to the
second parcel of cyclic loading with »; and nj. In this manner the development of 7,
during an arbitrary load history can be predicted.
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Fig. 5. Principle of strain accumulation procedure

There are some essential disadventages in the procedure described above. In spite
of some rather controversial assumptions, the application of the procedure is time con-
suming and the results obtained by hand-calculation and interpolation are subjected
to errors. The first drawback is the construction of the cyclic shear strain contour dia-
gram. It is generally drawn by hand. Thus the final shear strain determined using such
a diagram is subjective. Besides, as in each graphical method there are some additional
errors due to a scale, accuracy of reading etc. In additjon, representing a storm by
a set of parcels, each with constant shear stress amplitude is only an approximation
of a real storm. Discretization can also have an influence on the final results. In the
following sections a numerical presentation of the cyclic shear strain accumulation me-
thod and the modified analytical method will be presented. The proposed approaches
essentially eliminate the disadventages described above. The computer programme de-
veloped provides a means for fast and exact determination of the cyclic shear strain
for an arbitrary load history results.

3. Cyclic shear strain contour diagram

The cyclic shear strain contour diagram gives the relation between the number of
cycles n with a constant shear stress amplitude 7 necessary to reach a shear strain 7
(Fig. 2).

A general form of a stress-strain relation can be written according to Ronald and
Madsen (1987) as:

% o + 1\'1“(“ :
I I(g + Ka‘)‘ + K4‘7°’ : (3)
The parameters K; to K4 can be chosen as function of n to obtain a good fit to the

data from the laboratory tests (Fig. 2). Based on the analysis of several models, chose
the following representation of these parameters:
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(4)

K; =a

K1=K4=0 }
K3=ag+63N+€l4N2

where: N =logn . : , :
Further, for convenience the number of cycles will be identified with N.
The parametr a was assumed as equal to 1. .
1t is now possible to express one of the quantities 7,7, or N in terms of the two
others:

e N I 2. 5
(v N)= K:+ Kav a1+ (aa+asN + ayN?)y ©)

_ Kar o= Ta 6
W 1—7Ks 1—7(az+asN + aN?) (©)

—Tva3 + \/(T'yaa)’ — 4rvyay(Tay + Tya2 — )
27ya4

N(r7) = (M

There are, of course, some limitations concerning the above expressions, connected
with the assumed relationship 7 — 4 — N. The following condition should be satisfied
in expression (5):

ay + (az + asN +asN?) > 0
in expression (6):
l1—r(az+asN+aN*) > 0 and a;>0
and in (7) :
(t7a3)? — 4ryaq(ray +Tya3—7) > 0 and a >0

Knowing values of the parameters a; to a4 it is possible to express the relation-
ship between the cyclic shear stress amplitude, cyclic shear strain and the number of
cycles in the analytical way. The parameters are determined from the laboratory re-
sults (Fig. 2), using approximation procedures. Roland and Madsen (1987) used the
maximum likelihood method in their work. ;

4. The numerical solution

Knowing the analytical expression for the relatioship 7 —y — N and values of the
parameters a, to a4, the final cyclic shear strain for a given storm can be determined
in a simple way, according to the scheme presented in Fig. 5a. Using the notation in

Fig. 6, one can write : '

Yma2 = N1 + N2 = (12, 7(T2, Ym1 + A 2) + o)
Ym3 = YN1 + IN2 + INa = ¥[T3,n(73, Ym2 + A7a,3) + 3]

Tm1 =YN1 = "{(Tt,Nl)
} (8)
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Fig. 6. Basic notation used for numerical procedure
where:
; T2a Tia; -
Ana=9lm1) —9(n,1) = =L - D0
Taa3 2 20} 2 9)

Amys = (s, 1) T 7(1'311) - 1—1ay i T T2a,

Ymi = denotes the accumulated cyclic shear strain after the i-th parcel (after n, +
na +- -+ 4 n; cycles).

Generally, one can write a recurrent expression for Y, the cyclic shear strain due
to a storm consisting of k parcels with increasing cyclic shear stress amplitudes from
TLtoTmy:

Yk = YTy Ner) = [, n(Th, Yom o1 + A%p1x) + ny) (10)
where;
A'fk—l =v(n, 1) - Y(Th-1, 1) (11)

Using expression (6), the total accumulated cyclic shear strain for a given load
history is: o

@17k
1- -r,,(a; + GaNgk + anzk) (12)

Tmk =




60 J. PRZEWLOCKI

where:
Nex = log [10V(me4) 4 10M] (13)

Yek = Ymh-1 + AV-1k (14)

The expression (13) was coded in FORTRAN 77 for practical applications.

5. The analitycal solution

The methods discussed earlier i.e. the graphical method proposed by Andersen et al.
(1978)and its numerical presentation, are numerical ones, which implies the possibility
of appearing numerical errors. In both cases a storm is assumed to be discretized in
parcels. This presents more or less exact approximation of a real storm. The load history
may significantly influence the final cyclic shear strain. In the following, the expression
for the storm as a continuous function of a number of cycles is introduced..
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Fig. 7. Equivalent number of cycles components in strain accumulation procedure

According to Fig. 7 the cyclic shear strain for the cyclic shear stress amplitude 7,
after N cycles corresponds to point A. For an increased amplitude of Ar the shear
strain goes to point D and can be expressed as : -

oo =(r + Ar,N + AN, + AN; + AN3) (15)

It can be computed using formulae (16) if AN;,AN;, ANy are know. The sum AN =
AN, + AN; + AN; corresponds to a cyclic shear stress amplitude increment Ar. The
analytical solution could be obtained by a transition from the difference equation into
the differential one. To do this, it is necessary to derive expression for AN;, AN; and
AN; values (Fig. 7). The first AN; increment is due to the difference of the number
of cycles corresponding to stress change A for the same cyclic shear strain 44 = vp

(Fig. 8).
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For At approaching zero one can write :
Ar  9r(N,y)
=G S M /. 16
e = AN TN (16)

Deriving 7(N, ) expressed by formulae (5) with respect to the number of cycles N
one obtains:

ar(N,%) i —(as + 2a,N)4? (17
N [a1 + (a3 + asN + a N)qJ2
then:
_ =las + (a3 + a3V + ayN2)q)?
Al = (a3 + 2a4N)y? Ar (18)

Substituting into the above expression the formulae (6) for 4 and after some simple
transformations :
-1
M A ram -

The second increment —AN); results from the cyclic shear strain change of A % for
one cyclen =1or N =0 (Fig. 8b). As before one can write:

tmﬂ=%$=-a-%’ol (20)
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Substituting N = 0 Lo equation (5) one obtains :

b (21)
1(7'(]) = ay + axy
80!
BT("y, 0) - ay (22)
o7 (a1 + az7)?
Ta )
Again substituting into the above expression ¥(7,0) = = la, one receives:
aT('l’: 0) = (1 Ci 732)2 (23)
07 ay
Thus, the strain change Ay corresponding to A7 is equal to:
g a
= — 24
1 (1 —7ag)? 29)
and allows for determination of AN,:
AN, = N(7 + A7,y + Aq) — N(T + At,7) (25)

Developing (26) in Maclaurin’s series and taking into account only the first order
derivatives one gets:

_ ON(r )

Derivating N(r,v) expressed by (7) with respect to 4 one obtains:

aN(T,')’) 1H [r(a, + ﬂ3N + 04N2) = 1]2
ON a,-r?\/ag + daq(azN + ayN?)

(27)

and using (21), the expression for AN, is:

2y _ 172 ;
N, = [T(az + azN + agN?) — 1] (28)
(1 — -ra-,)’\/ag + 4a4(azN + a4 N?)
In order to determine ANj a storm should be described as a continuous function of
a number of cycles, Assumining that the shear stress amplitudes probability density
function follows Rayleigh’s distribution:

T —72
f(r) = ;exp [w] (29)
the distribution function has a form:

F(r)=1—-exp [;2_;—:] (30)
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Considering the cumulative curve one can write:
. N —r?
—_=1- —_—] = 31
N 1—exp [20:] F(7) (31)

where N} is a total number of cycles in the given storm.
The expression (30) allows to approximate a storm represented by succesion of parcels.
Finally the storm can be expressed:

Ne—N
N,

k

(32)

T =/=2a%In

In order to determine the parameter characterizing the storm a the following transfor-
mation should be done :

Ne— N —72

Substituting y = In & :N ye=3%  z=r7 yields:

y=az? - (34)
The parameter a can be found using the least squares method:

Bx!
a = ——m
Zzdy,

then :

iy ,2-"?%'
o= m (36)

Now the increment AN; can be found, according to Fig. 8c. Similarly as for AN, and
ANj; one can write :

(35)

tane = _AI_ = M
AN; ~ dN : (37)
dr(N) _ o .
N " (Ne-N) /T =)
then:
_Ne-N Ne-N
et LS . (39)
or

_ Nyt -7
At = e [ 3] (40)
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Having determined all increment components ANy, ANg, AN,, their sum AN =
AN, + AN; + ANs can be found using (20), (29) and (41):

.. + [r(az + asN + asN?) = 1]?
72(asz + 2a4N) (1 - rag)'\/ag + daq(asN + ayN?)

AN =

+ %exp[—‘r’/?a’]] Ar (41)

For the infinitesimal increments A7 and AN the first-order nonlinear differential

equation is obtained :

éfi _ -1 [r(az + aaN + a4N?) - 1]?
dr 7(as +2a4N) * 12(1 — 1a5)?\/ad + 4as(asN + aaN?)
+ _N_":.exp[—r’/2a2] (42)
(4}

In the above equation the expression (40) for ANj is substituted instead of (39).
It is so because the increment ANj is being added independently of the actual N. For
the given initial condition the equation (42) can be easily solved using numerical me-
thods. The author used the fourth order Runge-Kutta method for solving the example
presented below.

6. Numerical example

In order to illustrate the proposed modifications, the numerical example for a storm
given in Table 1 is presented. The data are taken from (Anderson et al. 1978).

Table 1
Load composition for example calculation
Cyclic shear stress | Number of cycles
amplitude 7 n
0.441 10000
0.552 1900
0.576 650
0.630 250
0.693 66
0.738 22
0.801 8
0.864 3
0.900 1
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Figure 9 presents a typical 6-hour load history divided into 9 parcels. The approxi-
malion curve from eqs (33), with the parameter a = 0.17855 is also shown.
The cyclic shear strain contour diagram is presented in Fig. 10 for the coeflicients:

ay = 0.0018944; ay = 0.95067; az = 0.084163; a4 = 0.032781.

The obtained results i.e. strain changes due to the increasing stress amplitudes are
also shown there and presented in Table 2.

Table 2

Cyclic shear strains coresponding to cyclic shear stress amplitudes

Cyclic shear stress | Cyclic shear strain 4 | Cyclic shear strain v

amplitude 7 (numerical solution) | (analytical solution)
0.441 0.004157 0.004151
0.552 0.009500 0.007159
0.576 0.012941 0.008421
0.630 0.018623 0.011533
0.693 0.025892 0.018731
0.738 0.033405 0.025792
0.801 0.045136 0.034024
0.864 0.064536 0.046134
0.900 0.082456 0.051372

There are small differences between the cyclic shear strains at the end of the storm
calculated by the two methods. The main reason for this is the accuracy of a storm
approximation with the continuous curve and the proximity of the shear strain contours
for large shear strain values (Fig. 10).

Other calculations were also done for a few different values of the parameter a.
For example, for a small change in this parameter a = 0.182 (Fig. 9), the cyclic shear
strain at the end of the storm is equal to 0.09529. This means that the value of the
a-parameler is very important. (For a = 0.17855, the final v = 0.051372).

7. Conclusions

The proposed modifications are based directly on the graphical procedure and do
not rely on additional assumptions from the theories of elasticity or plasticity, but have
features common with both of these.

The modifications allow for a fast and exact determination of the cyclic shear strain
due to any cyclic load history. The computer programme based on them can be very
useful in practical design.

The divergences between both the numerical and the analytical methods increase

for increasing values of cyclic shear strains. The difference depend on the shape and
position of the shear strain contours.
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With the modified analytical procedure, a determinant parameter for the accumu-
lated shear strain due to a storm is the parameter characterizing the storm, o,
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Summary

The paper deals with the determination of the cyclic shear strain for the arbitrary
load history. A numerical procedure for the hand-drawing graphical cyclic shear strain
accumulation method proposed by Andersen et al. (1978) is introduced. The modifi-
cation of the method for a storm given in a continuous form is proposed. It yielded a
differential equation, which was solved using Runge-Kutta method. A numerical exam-
p'le is presented.



