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Surface wave scattering in a basin with
stochastically irregular bottom

Scattering by bottom irregularities is one of the effective mechanisms of long surface
gravitational waves dissipation (Howe 1971, Elter et al. 1972, Pelinovsky 1970). The
shallow-water theory predicts that the coefficient of dissipation increases with decrea-
sing wave length. Since the shallow-water theory fails for short waves it is necessary
to study the mechanism of wave dissipation due to scattering by bottom irregularities
within a correct theory. In this paper such problem for potential wave motion is di-
scussed. Propagation of small amplitude surface waves in a basin of depth H(z,y) is
governed by the boundary-value problem:

Ay + Bpl02 =0, -H(z,y)<z2<0, (1)
ot
=Ty 2=0 @
%ﬁ- =-VH-Vy, z=-H(z,y) (3)
where: -

¢ — velocity potential of wave with frequency w,

g — acceleration due to gravity,

H(z,y) = ho + h(z,y) — depth, ho - its mean value,
V = (8/8z,8/8y).
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Let < > denote average and < h(z,y) >=0, € =<h?> [hf <1

Since h(z,y) is small, let us reduce the boundary condition (3) from the surface
z = —H(z,y) to plane z = —ho by expanding it into a Taylor series about z = —hg in
terms of h(z,y), and retaining only the first-order term in such expansion (by using

Eq. (1))
X o V(hTp), #==ho (3a)
b4
To solve this boundary-value problem (Eqs 1, 2, 3a) let us apply the modified
perturbation method. The same method has been applied for surface and internal water
waves propagation (Ermakov 1977). Let us séparate the wave field into two distinct
parts: mean wave field o, and ; — fluctuation of the field about (g. It means that we
imagine a sequence of identical observations, where (o represents coherent component
in the sense of an average. Then ¢, represents the fluctuation of the actual field about
this mean in any particular realization (thus < ¢; > = 0).-
The boundary-value problem for o we can derive by averaging Eqgs (1), (2), (3a):

Ao + 3299/32’ =0, —-ho<z<0 (4)
d A !

B =g z=0 (5)
8o B ‘ | :
s = -V < hV¢y, ?, z2=—ho (6)

-

The boundary conditi®h(6) contains the gradient of fluctuation field. Therefore
the problem for g is ingomplete without knowing ;. To obtain the boundary-value
problem for ¢, we subtraek average expressions (4), (5), (6) from complete expressions

(Eqs 1, 2, 3a), thus ' ;

Apy + 0%, /02% =0, —ho<2z<0 e of (7)
a 2 '

-, £=0 | (8
2 :

% = —V(hVio) — [V(hVi1)— < V(hViy) >], z=—ho (9)

The fluctuation field gol“is‘ determined as soon as h(z,y) and ¢, are specified.
Supposing they are known, the boundary-value problem (Eqs 7, 8, 9) may be solved
with any accuracy by the method of successive approximations, Using small parameter
€ let us neglect the square bracket in Eq. 9. This bracket is of the order of 2 (it
is the well known Bourret approximation (Bourret 1962)). Now we have two linear
boundary-value problems connected by the boundary condition on the plane z = —h,.
Let us present it in the form:

1 i |
erolanf) = 15 [ [ E7e7ep (2) (10)
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Applying two-dimensional Fourier transformation in the plane (z,y) in Eq. (7) and
the boundary conditions (8, 9), we obtain:

d
.&.z_j.gpa—eacp‘l =0, —-ho<2<0 ‘ (11)
w" p 2= 0' (]2)

Frid e g @
d
L e =A@, | 19

where A(£) = — [f &*F e~ €7V (hVipo) = [ PR(X - E)H(X — E)pxe(—ho)
and H(f) = [[ d*F e=E7h(7).
Solution of equation (11) with conditions (12) and (13) yieldg

. MB gt cosh(¢s) + o winhigs)
Pa(*) = ¢ 13 coah(€ho) — g€ snh(Eho) (14)

Applying Fourier transformation to Eqs (4, 5, 6) and using Eq. 14 for ¢ we obtain
equation and the boundary conditions for ¢y, :

::7996—{2‘.9{0:0 —ho<l<0, ' (15)
2
:Z‘Pﬁ) - ‘Pfo =0 (16)
(€ %) gx — w* tanh(xho)
_"a?n i jj‘r) ¢(X awﬁ gx tanh(xho)' Ajsk whe . (17)

Here ¢(E) =< H?(k) > represents a spectrum of bottom irregularities. General solution
of (15) takes the form:

vy, =A e* + Be

Introducing this to the boundary conditions (16) and (17), we connect A with B and
obtain dispersion equation for the mean field

w? — gk tanh(kho) -{k f) g¢ — w? tanh(£ho)
gk — w?tanh khz Shla .U i3 el 5) {ta.nh(fho) (18)

By solving this relation, the propagation apeed and dissipation coefficient of mean wave
can be calculated. Due to small fluctuation of depth about the mean value let us repre-
sent the wave number k as follows: k = k + 6k + i, where k satisfics dispersion equa-
tion for basin of constant depth kg (w? = gktanh(kho)). By expanding left-hand-side
of Eq. 18 in terms of 6k + iy we obtain:
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; -k
6k + 17 = S R k) (19)
The integral I is complex; the real part of it is equal to the Cauchy principal value
and 6k provides the variation of velocity propagation and shape of nonsinusoidal wave
(this is essential for long-distance propagation i.e. for tsunami (Holloway et al. 1962)).
The imaginary part is defined by residue of the integral at the pole § = k and represents
the damping of the mean field due to scattering of random depth inhomogenities:

4(2kho)?k®

- © 3r+ 9)
7= 3 [2kH, + sinh(2kho))?

3 (20)

2

jde cos’ O ¢ (2k sin
0

Expression (20) differs from corresponding expression obtained for long wave in

(Pelinovsky 1970) by the factor:

i 4(2kho)?
"= [@kho + sinh(2kho))?

which decreases with increasing kho (graph of n is shown in Fig. 1)

Fig. 1. Function n = f(khq) .

Let us consider an example of wave propagation in the ocean. For the north-west

part of Pacific $(k) is known to be isotropic in the plane and may be a) PR
the formula (Bell 1975). y pproximated by
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10° m?- km, k<01 km™!
$(k) = 1025k-25m? - km, & >0.1 km™

Using Eq. (20) we obtain the dependence of the dissipation coefficient y on the wave
number (see Fig. 2). It is seen that for small k (i.e. long wavelength) v is an increasing

J\E"oq Km-i

e T Y >~

or 02 03 04 05 Kk &m'
Fig. 2.

function of k; it reaches the greatest value for k ~ 0.1 km™! and then falls rapidly. For
wavelength 20 — 200 km, damping length is of the order of the ocean size; thus the
dissipation is effective.

Let us return to the same problem, but instead of solving the boundary-value pro-
blem, we apply the equation proposed by Berkhoff (1976). The approximated solution
of (1), (2), (3a) is considered in the form:

D _ cosh k(z + ho)
o(F,2) = f(2)8(7), f(z) = “coshkhg (21)
where w and k are connected by equation w? = gk tanh kh,.
We first substitute (21) into (1), multiply it by f(z) and integratc over the interval
- [=he,0]. Then by using the boundary conditions (2), (3a) we obtain:
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Ad+ k¢ = xV(RV¢) (22)

where x? = 1.
Similarly as it was done above, let us expand ¢ in the form: ¢ = do + &1 (< 4 >=0).
Using Bourret approximation we have:

Ao+ k280 = x < V(hV 1) >, (23)
Ay + k21 = XV (hV ¢o).

And by applying Fourier transformation we have:

(—€*+ kz)%(a =xJ/ ‘Pﬂf QH(§— i (d) (24)
(=" + k) (@) = x [I @G- @ H(E~ o)

By expredsing ¢1(g) from the second equation (24) and substituting it into the first
one, we obtain: :

s v [ 07572920 .
gk =n [[e0E 0 S (25)
Dispersion equation (25) defines complex function £(k). Because of small fluctuations
of depth we assume § = k + 17, |y] < k; thus we get the expression:

(<] 31r+9) (26)

I
. Tia 2 . O oNTU
=7k qh/dé)cos 9¢(‘2ksm2, ad
which coincides with (20), derived from the exact model of wave propagation. Thus
the accuracy of Berkhoff model is high, and it may be applied to the problem of wave
scattering in the basin of complicated topography for any ratio of depth to wavelength.
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Summary

In the paper, a model of wave propagation over stochastically irregular bottom is
considered under the assumption that a spectrum of bottom irregularities is known.
Two various solutions are presented; they are the extention of known long wave solu-
tions.



