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* / Models describing the behaviouf of sml under cychc loéd take mto account both the
nymber of cycles, their magnitude and shape [4], [5], Considering the ihfluence of stochastic
loads one is interested not only in the average magnitude of ampht des. The vanablllt,y
of loads in time and the connected with it the probability of ¢ crossing of a certdin level of
bayrier and the probability distributions of local extremes.are of a great importance for the
proper estimation of structural safety [2]. :

+ If the soil is concerned, the strains and the generated by ‘cychc loads pore water pressures
depend to a great extent additonally to the type of soil and the bonnda.;y conditions on:the
magmtude and the number of cyclic loads. In ma.nyg practlcal cases, a distingt regu.lan;y in
cyclic loads is noticed, and both their frequenples and the a,mphtudes are qmtc well deﬁped;
Such 2 phenomenon occurs for example in case of machine. foundatmps. In other casesthe
knowledge of the cyclic load parameters is less well known but there are, rather lmovm the.
characteristics of the load process. These are natyral phenomepa such as the earthquakes,
wmd and wave loads. There is always in such cases a hlgh degree of uncartamty concerning.
the magnitude and variability of. loadmg and therefore thd uncertainty of soil stability for
long lasting cyclic loading. Calculations in such cases should,,1f~pos51ble, take m{g a\ocouq.g
the stochastic character of the phenomenon. The basic factor in such calculation”i is, a
tlcaually to having a suitable model, to know ‘he -patameters of the-process of load-
ng.

The purpose of this work is to describe and definé the envelope for’ the: autoregbisives
second order process AR (2) and for a linear, coqnbmzttlon of uncorrelated AR(2) processes,
because these processes are yvell suited for approx:matmn :of processes of cyclic behaviour.
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2. Envelopes

An arbitrary stationary process n(?) of an average value equal to zero may be presented
in the following form [3]:

n()=x(f)coswy t+y(f)sinwy ¢t ; (1
where x(1) and y(r) are stationary processes defined below and , is an arbitrary constant.

For construction of x(f) and y{r) process a Hilbert transformation #’(t) of the process
n(t) is required:

n(z
n'(t)= g J;‘é:dt 2
An analytical process is f‘ormed:
' 2()=n() +n'(1) | ®
and two processes a(t) and b(t) defined:
a t:)=Re [z()e ™ =n(f)coswy t+n'(1)sin g t 0]
b()=Im[z()e™ /] =n'(t)coswy t—n(f)sinw, t &)
Solvin,g equations (4) and (5):
n()=a()coswyt—b(t)sinw, ¢t )
n'()=a(f)sinwyt+b(f)cosm, t - )

- Ifa substitution a(t) =x(¢) and b(r) = — y(¢) is made the expression (6) becomes identical
o expression (1). It’s seen comparing (6) and (7) that the Hilbert transformation changes
€08 @t into sin wyt and a sin wyf into cos w,t with a negative sign.

This can be also verified by a direct transformation using expression (2). It’s evident
from (2), (4) and (5) that if n(¢) is stationary, the processes #'(f), a(?), b(¢) are stationary too.
The process given by the expression (6) may be now presented as:

n(f)=A()sin(w, t+¢ (1) . (8)
where A(r) is the process of the amplitude:
AWO=Va@?+b() ©
snd ¢(r) is the process of an initial phase:
a(f) R EIC) )
()= arctan[ - (:)] arctan 77)] (10)

s easy to verify that: :
a()*+b(@)*=n(1)*+n'(1)> 1)
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So the process of the amplitude may be defined as the square root of the sum of squares
of the process a(f) and its Hilbert transformation n’(z):

AW=r@*+n' (1) (12)

The Hilbert transformation using formula (2) and calculation of the amplitude is simple
if n(t) process is given in form of a function and may be integrated. For the discrete process
the integral must be replaced by a sum. Substituting r=pAz, t=kAr, n()=n(p),n’ (v)=
n' (k) one receives:

: 1 2=Z= n(p)
l)=— 3 "

T p=—w k—p

(13)

For k — p the discontinuity exists with the values of + o0 and — oo depending on the
sign of n(p) and whether k& tends to p for the values higher or lower then p. Eliminating the
discontinuity point two sums are received:

e L[7w ' n@) o n(p)

p=—w k—p p=i+1 k—p

(14)

The calculation, made by the authors, shows some inconvenience of this type of trans-
formation. It lays in the fact that both the past p<k and the future P>k values of the
process must be known. Additionally, the sum (14) is relatively slowly convergent and the
numerical calculation, made for the transformation of ideal cosine into sine function,
showed that when taking 30 summation points for each sum, it is 60 points together, the
etror in estimation of a sine was from 23] for 47=2x/10 to 16% for At=2z/30. For 60
points (120'together) from 2297 to 127, and for 100 points (200 together) from 21 %to5%.
By dividing the T period in 100 paris and taking for calculation 2-1000 points the error
decreased to 39 and for 2-2000 points to 2.5%. Naturally, for the transformation of an
ideal cosine function the iteration may be accelerated, but for the stochastic process the
aoceleration may be difficult depending on the process parameters. Due to that, the Hilbert
 transformation seems to be not sufficiently effective for the discrete process.

The utilization of the Hilbert transformation for the presentation of the n(r) process
according to formula (6) is not unique. If a spectrum S,,(«) of the process n(t) is known for
— o0 <a<co then the spectrum of the analytical process (3) is given as [3]:

Sez=45u(e) U(e) (15)

where U(a) is a function with a unit jump.
Designating by S;(¢) the spectrum of z(t)e™7®* process:

Si(@)=S.(a+wy) (16)

Making use of the properties of the Fourier transformation of complex functions, two
components of the spectrum S,,(«) in relation to @, may be calculated:

Si(a) + Si(—e)

2 17)

Su(u) =
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which is the real part of the spectrum, and:

' g gy P 41 o (Y sessonpadi e
.su(a)='—(°-‘)—i}§(—i) (8)

which is an imaginary part.

 As can be seen from the above, knowmg the spectrum S,,.(«) of n(t) process, gwen by
expression (6) one can calculate the spectrum S,,(«) of the proaessla(t) This gives its co-
variance function R,(7) and the covariance function Ry(7)=R,(7). For statmna,nty

R,,(0) should be equal to zero, and jt means that random variables a(¢) and b(t) are un-
‘correlated. It doesn’t mean hovewer that the processes a(t) and b(¢) are uncorrelated and
therefore S;(¢)#0. The general expression for the autocovariance function of the n(t)
process is therefore as follows: : - s i3

R ()=R (1) cos @gT—Ry(Dsinwgz '+ 0t LI (19‘)
4 Fi 35

The amplitude process is a slow varying process if the process n(t) is a narrow band
process such that S,,(«) can only take large values around.a.particular frequency . The
regularity factor expressed as:

Az

ol o i A b S My <2__°?

where spectral moments: R b ey
A,=2jafs,,..(a)dm' N A (21)

L2 SROLE 18 By o
is then close to umty [2]. Wy i ‘
For slow varying processes both the amphtude and the imtlal phase are cl;tangmg
slowly so it may be assumed that A(f)~0 and ¢ (t)~0. The first derivative of n(t) process is

then as follows: ] Kol s N ;
n(f)=A4(1) a:o cos (@, t+¢(t)) LY (22)

There is no problem now in eXpressmg the amphtude as the functlon of n(t) and n(t)
From (8) and (22) one receives: . oy e e

20,5 b culd 2o nolissitig wd ©
()= [z(r)+("(‘))] JORMSSE -
i [ O] (O > R0~
MADSEN [2] refering to KRENK shows that when the second derivative is taken:
n()=—A(@agsin(@gt+d(®) -, 0 oy (24)

the expression for the amphtude takes the form: T2 Stk i0)eyn 3

N 270,
Al [(a?)) ()l e

This of course requires the assumptioh that not oﬁly the first but also the second deriva-
tives of a(f) and ¢(¢) are close to zero and this may not always be true. It is shown in the
numerical examples presented further.
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Designating the values of the process in three consecutive steps in times ¢, =¢—A4t, 1, =¢
and t, =1+ At by n(t,)=n,, n(t,)=n, and n(t;)=n; and substituting for n(t) and #(¢)their
respective first order difference quotients the following formula is received for the expres-

sion (23):
ne—n. \2795
A=| m2+( =—2) | 26
- ["’+(2wodr)] =
and for expression (25): ‘

ny—ny\2  [ny=2n,+n\*1°° p
® [( 2mozlt) +( ol At ) (20

" As it’s seen from formulae (8), (9) and (10) the values of the amplitude and the initial
phase are processes and therefore change in consecutive steps. If n(f) is a slow varying
process, and it may be assumed that in the neighbouring points amplitudes and also initial
phases differ little from themselves, the amplitude A4(¢) can be calculated by finding the
parameters of a sine function. It is assumed that it passes through three neighbouring
poijns, the middle of which is n(t). Using notations as before, after simple calculations,
one receives:

oAt marccos ("‘*"3) 29)
ey i N\ 2n; :
-y t+¢=arccot(~2-,;£§{n_———;1m) (29
28100,
A= = (30
25 ()Cm%mmo 0

One has to realize that if the process isn’t a slow varying one the errors when making
calculation with formulae (28), (29) and (30) may be high.

3. The envelope of tlig autoregressive second order AR(2) process

The Gaussian second order autoregressive process is quite often used for describing
the stochastic phenomena having cyclic character. KNABE [1] presented the possibility,
of such approach for loads or displacements of the offshore structure foundations by
using sums of uncorrelated AR(2) processes. The knowledge of the parameters of the
envelope of such a process may be essential if the computational model requires it and if
the real process may be approximated by sum of AR(2) processes. The envelope may of
course be calculated in any way described before. Bzlow, the method is presented, worked
out by Knabe for finding the accurate value of the envelope based on all values of the
process up to the current time. ‘

The AR(2) process may be presented as follows:

%) X(k)=¢, X(k—1)+ ¢, X(k=2)+V (k) (31)
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where:
¢1=2¢"" coswAt (32)
¢2 i _e—anl (33)
n — is a damping parameter, :
2n
P 34
o (34)

T — average period of a cycle in a process, 4t — the time interval from step k to k+1,
V(k) — white noise process having normal d|¢tnbuton NTO, 62].
The variance of V(k) is related to the variance o2 of the X (k) process by expression:

t=(ren ) ee £
Using the backshift operator B the X (k) process may be written as
 [-$.B-4,BIX W=V (1) (36)
P(B) X (k)=V (k)
X(k)=¢"'B)V(k)=w(B) V (k) 37

and this is a moving average process:
X()=V ) +y, V(k—D)+y, V(k—2)+...+y, V(k—p) (38)

The expression (38) is equivalent to (31) and it will be further used in constructing
the envelope.

3.1. The response function for a unit impulse

As it’s visible from expression (38) the impulse applied in point k—p influences the
value of the process in point k where k>p. Coefficient ¥, can be calculated by doing k—p
operations according to formula (31) on a unit impulse. So when the unit impulse V(k)=1
is applied at a point k=0, its influence on the process values at points k=1, 2, 3, ... will
be according to (31) as follows:

X(0)=v0)=1 -=>Wo=l
X(1)=¢,X(0)=¢, V(0) =y, =¢, (39)
X2)=¢, X(D+¢, X(0)=¢:1! V(0)+ ¢,V (0) =’W2=¢i+¢z

It’s simple to prove that the response of the process X(k) to a unit impulse is in a form
of decaying sine function:

(k)=e""4(4 cos kwAt + Bsin kwdt) (40)
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Assuming that the impulse is applied for =0, and that for k=—1, X(—1)=0 the
values of parameters 4 and B are as follows: 4=F/(0), B=V(0) cot wdt.
The expression for X(k) takes therefore the form:

e k, »
where: X (k) =V (0) d (OOS kot+cotasin ka) (41)
d=e™™ and a=odt (42)
The expression (41) may be written as:
X (9= () g R+ D] @)
sina

So, for the consecutive values of k, the following expressions are received:
k=0 =X(0)=V(0)
k=1 =X(1)=V(0)dcos2ax
k=2 =X(2)=V(0)d*[4cos’ x—1] (44)
k=3 =X (3)=V(0)d’[8cos’ a—4cosa]
k=4 =X (4)=V(0)d*[16cos* a—12cos® ¢ +1]

Identical expressions are received from (39) by substituting for ¢, and ¢, formulae
(32) and (33) respectively. Let’s now assume, that the impulses ¥(0), ¥ (1), ¥(2), ..., ¥(p)
are applied consecutively in points p=0, 1, 2, ..., p. The response at point k to each se-
parate impulse where 0<p<k is (using expression (41) as follows):

p=0 =X(k)=V(0)d"[coska+Csinka] where C=cotu
p=1 =X,(k)=V(1)d* '[cos[(k—1)a]+Csin[(k—1)a]]
p=p =X,(k)=V(p)d* "[cos[(k—p)a]+Csin[(k—p)a]]
p=k =X(k)=V(K)
Summing up the responses of all impulses from p=0 to p=Fk one receives:

r=k

X (k)=coska[ ¥ V(p)d* "[cos pa—Csin pa]]+
p=0

+sin ka [’ikV(p) d*~?[sinpx+Ccospa]] (45)
p=0

3.2. Process AR(2) as a sine with an amplitude and initial phase as stochastic
processes ;

Designating in (45) the coefficients:

; p=k
B(k)= EOV (g)d"“’[cospa-— Csin pa] (46)

C(k) =:2:V (p)d"~"[sin px+ C cos pa] 47)
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and having in mind that a=wdt and C=cot « the expression (45) takes form of expres-
sion (1) where instead of n(t), x(¢) and y(¢) the processes X(k), B(k), C(k) are substltuted
respectively and the time t=kAt -

_ X (k)= B(k)coska)At+C(k) sin kAt (48)

- This is a form of the process which according to (9) permits to calculate the envelope
process and according to (10) the initial phase process. Both B(k) and C(k) are processes
as their values change in each consecutive step depending on the value of a random mipulse
K(I_;) In the k+1 step the B(k) coefficient has the value:

p=k+1
B(k+1)= Y V(p)d***?[cos px—Csin pa]
p=0

which one can write as: ‘
r=k
B(k+1)=d Y. V(p)d*~"[cos pa— Csin px]+
p=0 Ti

+d°V (k+1) [cos [(k+1) &] — Csin [(k+ 1)]]
The sum in above expression is identical to expression (46) so

sin ko

B(k+1)=dB(k)— V(k+1) (49)

Similarly:
cos koc

C(k+1)=dC(k)+ V(k+ 1) (50)
As can be seen from the above, the processes B(k) and C(k) may be regarded as the
first order autoregressive processes. They aren’t stationary as the variance of the white
noise isn’t constant but varies within a period and is equal to
sin ket

L — for B(k)
sin” o

and

cos?ka - "
o2 X for C(k)
s~ o

i gl 2
As a=wAt'=?nAt=-n—”, where n is a number of divisions in which a period T is divided,

the variance of the white noise of the process B(k) is equal to zero for k=0 and for k=
=0.5n+pn; p=1, 2, 3, ..., . The variance reaches its maximum for k=0.251+pn and for
k=0 as then sin ka= j:sm n/2. For the white noise of the process C(k) the variances have
identical values but are shifted by a phase z/2.

The sum of these variances is constant and independent of ¢ and is equal to ¢?/sin? a.
The covariance matrix has a form - -

oy [ sinka, —0.5sin2ke
“sin?a| =0.5sin2ka ' cos®ka

(51)
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‘The correlation matrix is therefore as follows:

e e
.c—[_i. 1]- 52)

and so there is a full negative correlation between the random impulses of B(k) and C(k)
processes. Squaring the B(k+1) given by (49) and taking the expected value one recei-

Ves:
* 2

BB D= R[] 20 B LB Y e D] S T e 0]

. As B(k) and V(k+ 1) are uncorrelated and E [B(k)] =0 the relauon, between the va-
riances y°(k) and y°(k+1) of the B(k) process is as follows: .1 - - i

2ka: -
?’ : 2 63 ; " 5

s For a given value of a=wmA¢ the above variance isn’t constant but depends on sin ka
and the expression (53) may be treated as the first order autoregressive process of a form

X (k+1)=6X()+V (),

Here the coefficient ¢p=d? whereas in the B(k) process (expression (49)) ¢=d. The
impulse ¥ (k) is here deterministic, depending on the sin ka value. Similarly to (53) the
relation for variances of the C(k) process is as follows:

cos? ka

C(k+ 1) dzyc(k)+o-, e (54)

. The sum of variances of the B(k) and C‘(k) processes is then:

2

Al Yok + 1)+ 9k +1)= dz(yx(k) +(k) + (59

As the n(t) process is statlonary, one may expect that its envelope process Wlll also
be-stationary and so the ex.pected value of B?(k)+ C?(k) be constant, As this expected
value is equal- to the sum of variances (55), it will be independent .of k if:

2

PR +1°(0)= ©(56)

v

A (NI (M =d?) sin o

As it’s seen from the above the B(k) and C(k) processes may be regarded as AR(1)
processes of constant expected, values. equal t0, zero but of varying variances depending
on the cyclic variability of random impulses. The random impulses are fully correlated
a_nd in a such way that the sum of their variations is constant. .

If for k=0 the value of B(k) is equal to B(0), the values for the consecutive steps,
may be expressed as

©t B(k)=d*B(0)— Z v@E)d-!
grirdm o

sin iot . (57)

sino
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and sirnilérly for C(k):

C=dcO+ 3 Vi1 (58)
i=1 sino

3.3. Envelope of the AR(2) process

Because the X(k) process has been presented by formula (45) as a linear combination
of cosine and sine functions, with the coefficients in form of B(k) and C(k) processes
(formulae (46) and (47)), the sum of squares of these coefficients may be treated as a squ-
are of an amplitude of the process given by (45). Let’s form a vector process with processes
B(k) and C(k) as components:

_|Bk+1)]_['B(k) —sin ko/sin o
D(k+ D_[C (k+ 1)]‘d [C(k)] +[ cos kafaln J”"* b (39)
D(k+1)=dD(k)+EK) ¥ (k+1) © o (60)
where
ET(k)=[._Sif‘ ko , C(Ts ka]
sina * sino
The process of the squared amplitude takes form:
A% (k+1)= D(k+1)D(k+1) (61)
and after substituting (60):
A*(k+1)=d>A*(k) + 2dD(K) E(k) V (k+ 1) + V(k +1) sin™% o (62)
As the random impulse:
V(k+1)=0,U(k+1) 63)

where U(k+1) is a random impulse with the normal distribution N [0, 1]:

o

A(k+1)=d" 4*(k)+ [2do, D"(K)E(K)] U (k + 1)+ U(k + Do (64)
This may be written as:
AX(k+1)=d*A*(k)+ W (k+1) (65)
where:
2
W (k+1)=[2da, D'(K)E(k)] U (k+ 1)+ U*(k+1) m: - (66)

As it’s seen the process of the squared amplitude of the AR(2) process is the first
order autoregressive process (65) in which the random impulse W(k+1) is a sum of two
correlated impulses. One of the impulses has a normal distribution with zero mean value
but varying variation and the second impulse has a constant variation and the chi-square
distribution with one freedom degree. The varying variance in (66) depends on the pro-
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duct of multiplication of two vectors D'(k) and E(k). This product may be presented as:

sin ko
—+C (k) —
sin o sin ¢

D7(k)E(K)= —B(k) il

Substituting for B(k) and C(k) the expressions (57) and (58) respectively:

_ x[C@coska—B(O)sinka] k. _sin[(k+i)a]
D'(k)E(k)=d [ ] ]+ i; V(d ’W (67)

For high values of k, 4“0 and the first component may be disregarded. Substituting
V(i)=a, U(i) one receives:

k 3 k
D(k)E(k)=0, }, U(!’)d""zﬂ(.—;iﬂ (68)
i=1 sin® o
So the random impulse in the squared amplitude process:
E - ¥ . 2rr2
W(k+1)=2a§[ 5 U(i)d""w]v(ku)f—”v,—(z@ (69)
f i=1 sim- o sin” o

Though the expression (69) explains more clearly than (66) the character of the ran-
dom impulse W(k+1), it is nevertheless less convenient in numerical calculations, beca-
use the varying coefficient, by which U(k 4 1) is multiplied, must, in each step, be calcu-
lated as a sum of weighted impluses U(i). It’s much more convenient to use formula (66)
where, for calculating D(k+1) in the consecutive k+1 step, the recursive formula (60)
may be used. E(k) is a deterministic vector and d, «, and « are constant values.

The expected value of the squared amplitude is received from (62)

0.2

E[A’(k+1)]=E’(k+1)=d232(k)+sin';m (70)

For stationarity, the expected value is constant and so:
A= ————— !
(k) (1—d?)sin’a an

This expression is identical with (56) for the sum of variations of B(k) and C(k) pro-
cesses. The amplitude process is received by taking the square root of (65):

A(k+1)=[d*A*(k)+ W (k+1)]"° : (72)

Finding the expected value and covariance function of this process seems to be dif-
ficult and wasn’t done here. The average value of the squared process was only calculated
and this is as follows:
142d*+d*—4d*cos’a

73)
(+d)sin’a 3

#(9=0

It was received by substituting o2 from (35) to (70) and utilizing expressions (32), (33)
and (42). For 4t—-0, d—1 and a—0 so the expression (73) is indeterminate. Evaluating

7 Archiwum Hydrotechniki 3 - 4/89
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the limit:
2 2

A(k)=202" +2 (74)

Knowing the average of the squared amplitude from (74) one can calculate the square
of average amplitude if a variance ‘of the process is known:

- (A(Kk))*=4%(k)—Var[A(K)]. G aATS)

Summarmng one can say that though the autoregressive AR(2) process is relatively
simple one, the exact autocorrelation function of its envelope is difficult to receive. It
would be possible to get an estimation of it using a generally known approximating for-
mulae, but this wasn’t done in this paper. Nevertheless, it’s easy to generate the envelope
process calculating B(k) and C(k) using formulae (46) and (47) or recursively (59) and
then the amplitude:

A()=[B*()+C*(1)]™* . (76)

It may be also calculated using formula (65) in which the random impulse W(k+1)
is given by (66).

3.4. Transformation in the state space

WILDE [6] presented the procedure for receiving the curves taﬁgent to the autoregres-
sive second order process for the model of the AR(2) process in the state space and having
therefore some properties of the envelope

X(n+1)=9X(n)+gV(n+1) (77)
where:
X"(n)=[X(n—-1), X(n)].

For the observation, described by the relation: '
Z(n)=hX(n)+o,U(n) (78)
a linear transformation is performed: |
Y(n)=7X(n) (79)
wﬁcre 7 is a’transformation matrix such that:
E[Y(m) Y ()] =7k(0)y" =k(0)1 (80)

and k(0) is a variance of X(n) process;
‘The following expressions for Y(n+1), Y(n) and Z(n) are received:

Y(n+1D)=¢y¥Y(n)+gyV(n+1)

Z(n)=hy Y(n)+0,U(n) (81)
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For -0, g, becomes a zero matrix and ¢, the rotation matrix. The ex.press ion for
Z(n) takes then the form:

Z(n)=Yy(n)sin [(on—w/2) 4] + Y,(n) cos [(wn—w/2) 4t] (82)
where Y,(n) and Yz(n) are the elements of matrix Y(n). The amplitude is calculated as;
Am)=VY"(n)Y(n) (83)
For n#0 the expressions for Y;(n) and Y,(n) take form:
\/_ chndt e
Yi(m)= [W] [X(n-1)-X (] (84)
J_ chndt s
Ya(m)= [ch ndt+cos wdt:, LX (= 1)+ X (m)] (85)

If At tends to zero then;

P -1 X(m)—-X(n-1)

JVorin? 4t
and for n=0 the expression (86) is a derivative of a cos (wf+¢). The expression (85) is
for n=0

(86)

X(n—1)+X (n)

> (87)

Yy(n)=
and it’s the average value from the interval n, n—1.

In the vicinity of extiemes Y(n) tends, for small 4t, to zero as X(n) is close to X (n—1),
so the expression (83) gives directly the ¥,(n) value and forms a sort of an envelope. The'
values of the eavelope calculated by the above method differ relatively little from values
calculated by the method proposed by the authors (formulae (49), (50) and (76)). The
results of numerical calculations are presented later.

3.5. Envelope as a square root of a sum of two independent (RA2) processes

Assume, that a spectrum S,,(«) or a correlation function R,,(z) of a stationary n(t)
process is given. As a special case, the n(t) process may be an AR(2) one. The n(z) process
may be presented in a form given by formula (1). Let’s assume that processes x(¢) and
¥(¢) are uncorrelated which suggests that the imaginary component of a spectrum (see
(18)) in relation to @, is equal to zero. Let’s also assume that with a sufficient dose of
accuracy the processes x(¢) and y(¢) may be approximated by AR(2) ones. For such ass
sumptions the correlation function of the n(t) process has the following form:

Ru(D) =R, (t)coswp T (88)
and a spectrum of this process:

Sul(®)= (89)

Sex(0t—@9) + S, (a+@p)
; 2 2
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For the case when x(z) is an AR(2) process, the correlation function is given by the
following formula:

R, (1)=e ™" [cos W, T+ %— sin @, 'r] (90)
Therefore
R,,,,(-c)ze"""'[cos W, T+ %"— sinw, 1.'] cosSwg T (91)

The spectrum of x(z) process for a$0:

407 n,(nz + )
S B x x X 92
S 7 [n3 +(@x+)*] [ +(@,— )] o

According to (89) if S,.(«) is given by (92) then:
4 1
S =~ ain+od|
e i g [13+(wy—a—ay)*] [ni+(w,—a+m,o)2]+
1
+ 93)
[ﬂ:+(w.=_“+mo)2] ['1:4'(“‘:_“_“’0)2]] :

If a real spectrum of n(t) process Sy(«) is now given, the parameters #,, &, and wx
of the x(¢) process can be calculated for the condition that:

?(S.m(ﬁ) —§7,(@))*da=minimum (94)
[}]

or
F [Syn(@) — Sta(@)|dz=minimum (95)
0 i

In numerical calculations the intégral is replaced by the sum. Instead of a spectrum a
correlation function could be used. Designating by R},(7) the correlation function of a
given process, the integral of a square of the difference of this function and that defined
by formula (91) should be minimized. Practically, w, should be assumed to be equal to
the abscissa corresponding to the maximum of the spectrum of the n(t) process and equal
to approximately-2z/T where T is an average period. For AR(2) process the peak of the
spectrum is for a=(wj—1?)"* and for small 5, « is approximately equal to wo.

The above assumptions may be further simplified by assuming that the x(¢) process
is an AR(2) one with T'= oo, that means ®,=0. The expression (90) in this case simpli-
fies to: )

R (1)=e " (1+n,7) (96)
and the spectrum formula (93) for the n(#) process takes the form:

8¢Znd =0k
Jbon: : i
Sw(@)=— [['_Ii +(a+wo)*] [+ (e~ wo)z]] ol
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In this case only the parameter, #, will be sought for. When #, is known the x(¢) and
¥(t) processes may be generated and the amplitude A(r) calculated

AWM=+ )*(1) : (98)

It’s shown in presented further numerical example how the #, value changes depen-
ding on 7 and o parameters of the n(t) process which in numerical example was assumed
to be an AR(2) one. Generally, but not always, the approximation received by using for-
mulae (96) and (97) is sufficiently accurate.

.4, Numerical examples of the envelope calculations

To illustrate the character of the envelopes, calculated by different formulae, some
realizations of an AR(2) process were generated with the minicomputer IBM PC-XT.
The same average period T=10 s was used for all generations. Two damping parameters
were adopted; #=0.01 for more regular processes, differing relatively little from sine
curve, and #=0.1 for processes with higher irregularities. Two time intervals were cho-
sen At=0.5s, so that the average period was divided into 20 parts (Fig. 1) and 4t=1.5s
producing 6.7 divisions per an average cycle. The calculations were performed using for-
mulae: (26) and (27) with the assumption that the envelope process is a slow varying one,
(76) calculating B(k) and C(k) recursively with formulae (49) and (50) and (83) by trans-
formation of an AR(2) process in the state space.

Process paramelers
61500 ¢ =169 T=10  At=05

G- 001  py=-099 w =063 2 =001 Envelopes
z(t) -=== formula 26
it e e il A o b S formula 76
: \ —— formula 83
&t i oo formula 27

£l
3 R ; IR
] negative process positive
C Kalues provess
! :{1' Ak values
I T Nk furger |
RAWPE L
g fd o4
e A
B ooy {7 2w
| ot Y.
! i ' ! | |
| | i ! | :
b € S | aust | , k-At
Fig. 1

Conclusions:
— The assumptions that both the first and the second derivatives of the amplitude and

the initial shift may be assumed to be zero are for AR(2) process with #=0.01 not admis-
sible. The envelope calculated with formula (27) isn’t tangent to the process but, in several



1l
£ z( [N Pracess parameters
by e el O =500 #-101 T-10 At 15
B i / A 6 =150 P5 =-07% w=053 g *01
~== formula 76 / -

—— formula 83

3
o I
: :
2 | 1
t ! 'y
i H [
| [
| 1 H i i b B
| | I 1 i ¥
o ToEl e g5 e b
| # 3R T W S
! | gk ! : Tk ‘.Y. H
1 | 1 Lo 3
PR At Aty ¢ aiad Aol kat
Fig. 2
Envelopes H
—— formula 76 S rocess parameters
~== farmula 76 G;'=500 =136  T=10 at=15
z(t) — formula 83 612019 g =097 w=063 ¢ =00
s formula 27 -
o}

3K ——
pasitive
| process™
! values
2}
1
1
i
i [
Lo
|
[
b
I
1
o ] 1

Table 1
Values of n, of the x(#) AR(2) process in formula (1) depending on @ and # of approximated AR (2
process n(t)
ol | o010 | 003 | 0.050 0.070 0.100 | 02500 | 0.500
0.3 0.021 0.062 0.101 0.138 0.190 0.435 0.535
0.6 0.020 0.063 0.105 0.147 0.205 0.493 0.790
1.0 0.020 0.061 0.105 0.142 0.208 0.490 0.950
1.5 0.020 0.060 0.110 0.150 0.215 0.515 0.970

20 0.020 0.060 0.100 0.154 0.215 0.515 0.980

[298]
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places, takes the values smaller than the process itself. (Fig. 1, Fig. 3) This is also due to
the high errors made in numerical calculation of the first and second derivatives.

— For a small time interval (4¢=0.5 s) and a small damping coefficient (#=0.01), the
envelopes calculated by formulae (26), (76) and (83) differ little from themselves for the
whole run of the realization (Fig. 1).

— For a higher time interval (4¢=1.5 s) and higher damping coefficient (#=0.1), the
differences of the envelopes values increase. For the extreme points, the differences are
small. It looks as if the envelope calculated with formula (83) was one time interval a head
of formula (76). (Fig. 2)

— It seems that formula (26) may practlcally be applied in each case. (Figs. 1, 2, 3) Ge-
nerally the envelope calculated with this formula has ordinates between those of formulae
(76) and (83). It looks that for the reasonably small time intervals the formula (26) gives
quite satisfactory results especially in the vicinity of extremes.

4.2. Envelope as a square root of a linear combination of independent squared
AR(2) processes

It was assumed in numerical calculations that processes x(¢) and y(¢) in formula (1)
are AR(2) processes of w,=w,=0 so their autocorrelation functions are given by formula
(96) and a spectrum by (97). The AR(2) process was then approximated by formula (1),
For different w and » of the AR(2) process the corresponding #, of process (1) were esti-
mated. This was done by using formula (95) where S,,(«) is the spectrum of AR(2) process
as given by formula (93) without subscript x, and S;,(®) is a spectrum (97) of process (1).
The results of some calculations are presented below in a table 1.

The results in the table may not be very accurats and slightly different values would
be received if the criterion (94) was adopted. Nevertheless it’s clearly seen that if w>%
and # is small so that the distinct peak in the spectrum is distinguished, then #, is appro-
ximately twice as big as #. The spectra of AR(2) processes are in such cases well appro-
ximated by spectra of processes given by formula (1). As an example three of them are
presented in Fig. 4. A better approximation would be received if the value of @, is slightly
reduced since the peak of AR(2) process, as mentioned before, doesn’t occur for @, but
for (wj—#»2)°S. This is a matter of discussion because the assumption of smaller w, will
increase the average period T'=2n/w, in formula (1) and it will therefore not be the same
as in the AR(2) process being approximated. There is no problem in making an alterna-
tive calculation. In this case not one parameter 7, but two parameters 7, and @, in for-
mula (97) must be found using cricerion (94) or (95). The realization of the AR(2) process
for n=0.01 and w=0.63, approximated by formula (1) is presented in Fig. 5. The para-
meters for the x(¢) and y(¢) uncorrelated processes are #,=0.02 and w,=0. As it’s seen
the envelope drawn as a continuous line is smooth and practically tangent to the process
in the extremes. Additionally an envelope, calculated with the formula (26), is also pre-
sented. It’s drawn as a dashed line and it’s ragged as the numerical calculation of the first
derivative is burden with numerical errors and the assumptions made in deriving the for-
mula are never fully valid.

ey
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Process paramerars
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Fig. 6

Similar realization but for the higher #=0.1 is presented in Fig. 6. There is a consi-
derably higher variability of the process itself and therefore of its envelope. The envelope
marked with a continuous line, calculated on the basis of the transformation of the AR(2)
process into the form presented by formula (1), is smooth and tangent to the extremes.
The dashed line presents the envelope computed with formula (26). In some parts it coin-
cides with the continuous line but in some points it deviates considerably.

5. Final conclusions

If the stationary process is given in form of a function which could be subjected to
Hilbert transformation, the envelope of this process is given by the formula (12). If the
whole or sufficiently long realization of the process is known, the discrete Hilbert transfor-
mation may be performed using forinula (14) and the amplitude calculated using formula
(12). This is a time consuming calculation as each value of an amplitude requires one
Hilbert transformation.

If a spectrum of a stationary process is given then the spectrum of the a(t)=x(t) pro-
cess in formula (1) can be calculated (17). Then, assuming the character of this process
its parameters should be estimated using expressions (94) and (95). An example for AR(2)
process is shown in paragraph 3.5.

For the realization of an AR(2) process, the envelope may be calculated in each con-
secutive step using formula (76) with parameters found recursively with formulae 49)
and (50). Alternatively the formula (72) for the envelope may be used with formulae (66)
and (60) for computation of the random impulses. When the realization of an arbitrary,
stationary process is given the envelope may be estimated using formula (26) with the

_assumption that the first derivatives of the amplitude and the initial shift are equal to
zero. The resultant envelope is a bit ragged and not smooth contrary to that calculated
as described in the paragraph 3.5. (Fig. 5).
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The formula (27), developed on the assumption that both first and second derivatives
of the amplitude and the initial phase are equal to zero, isn’t sufficiently accurate. The
high inaccuracy is also due to the errors in discrete calculation of both the first and the
second derivatives of the process.
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Obwiednie stacjonarnych proceséw stochastycznych
Streszczenie

W pracy opisano dokiadne oraz przyblizone metody okreflania obwiedni proceséw stochastycznych.
Przedstawiono wykorzystanie transformacji Hilberta oraz okreslenia sktadowych synfazowych i kwadra-
turowych widma wzgledem $redniej czestotliwosci procesu, pozwalajacych oszacowaé przyblizone war-
toéci obwiedni. Wyprowadzono i okreslono wyrazenia na proces opisujacy obwiedni¢ procesu auto-
regresji rzedu drugiego AR (2). Opisano mozliwo$¢ oszacowanja obwiedni dla tego procesu w przestrzeni
stanu, wykonano wiele obliczefi numerycznych ilustrujacych sposoby okreSlania obwiedni i réznice
wynikajace z r6znych zalozen i przyblizen.

Oru6aomue cTATHOHAPHLIX CTOXACTHYECKHX HPONECCOB
CopepxaHne

B CcTaThe ONMCAaHEl TOYHEIE M NPHOMOKEHHBIE METOXBI OmpelesieHus OrMbarommX CTOXACTHICCKHX
nponeccos. Tlpeacrasneno npumerenue npeobpasosanms 'mnsGepra B onpec/eHds CHE(A3HEIX B KBan-~
PATYPHEIX COCTABISIOINAX COEKTPa OTHOCHTEIBHO cpeHel 4acTOTel mpolecca, NO3BOMAIONIAX OLEHHTE
npn6mrxennsie 35a4enns orabaromeii. BuleeieHBl H IPHBENeHE! BEIPaXeHH [J1s NPOLiecca, ONMCHIBAIOIIETO
ormfaromyro Dpouecca aBTOperpeccd BTOoporo mopsanka AP (2). Onmcana BO3MOXHOCTH OLEHKH OTH-
Garomeit AA 3TOro NpOLECCa B POCTPAHCTBE COCTOAHNA, IIPOBEIEH PAZ YHCIIEHHBIX PAcYeTOB, HILTHOCTPHA~
pyromEx cnocobhl onpeneneEua ormbaromeit W pa3TMIAA, BHITEKAIOMAE H3 PAa3HIX nIpermnoNoXeHHHR
H, npROmKeHmit, y



