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The mathematical model for the analysis of Stokes’

type waves

1. Introduction

The vibrations of a pile due to harmonic water waves were considered by P. WiLDE and
A. Kozakiewicz [1]. A mathematical model was proposed to decompose the measured
displacements into components with the multiples of the wave frequency and the natural
frequency of the pile. In a second paper [2] the same authors considered the problem of
beating. The waves generated in the flume for bigger heights may be described by the
Stokes’ approximation in which the profile does not follow the sinusoidal form. The mathe-
matical model proposed in [1] may be used to obtain a decomposition into harmonics but
in the flume additionally free waves with double frequency are generated and thus the
second harmonic is not a component of the Stokes’ wave. This problem was discussed by
G. BENDYKOWSKA [3] and St. MasSEL [4]. It is useful to construct a mathematical model
which is able to find the Stokes’ wave in the measurements and to calculate the free wave.
For random water waves in nature it is interesting to find a Stokes’ type wave with slowly
in time varying amplitude from the measurements.

The present paper is devoted to the construction of a mathematical model as the basis
for decomposition of measurements into a Stokes’ type wave and free waves. The stochastic
approach is used and the decomposition is based on the filter theory. In the case of Stokes’
waves the problem is nonlinear and an iterative procedure is established which enables the
use of the linear theory as proposed by Kalman [5].

The mathematical model should be very simple to obtain a useful method for data
processing. Thus, simplifications are introduced. The applications to the measurements in
the wave flume showed that the introduced simplifications do not cause significant diffe-
rences in decompositions.

Prof. dr hab. inz. P. WiLDE, mgr inz. W. RoMaNczyk, Instytut Budownictwa Wodnego PAN,
ul. Koscierska 7, 80-953 Gdarisk.



222 P. WILDE, W. ROMANCZYK

The elevation of the free surface p(x, ) for Stokes’ waves within the second approxima-
tion is described by the following relation (see for example [6]):

C(x,t)=§{cos(kx—mt)+v;+i;_ycos [2(kx—wt)]} ’ (1.1)

where i — water depth, H — wave height of the basic wave, k — wave number, w — angu-
lar frequency and
kh 3
=_—ctgh(kh)| 1+ ———— |-
g sl )[ 2sinh2(kh)]

The dispersion relation for the second approximation is the same as in the linear theory.

Thus:
2

b
w?=khtgh(kh). : (12)

It is possible to take the third approximation for the dispersion relation, but calculations
showed that for the present study the difference in results is very small and does not justify
the complications in analysis.

The Stokes’ theory is based on an expansion in power series of a small parameter. The
starting solution is the sinusoidal wave of the linear theory. The approximation is good if
the additional terms are small. Thus, the nonlinear term in /A which enters the relation (1.1)
must be small compared to the first one. It is possible to take more terms in the expansion
but the calculations will be more complicated. _

The elevation is measured at one point. Thus x=0 can be taken without loss of genera-
lity. The relation (1.1) may by written in complex numbers in the following form:

H —iwt 1 Hz —i2et
C(t)—Re[E-e +I—hye jl (1.3)

A generalization will be considered, that the Stokes® wave has a slowly in time vaiying

amplitude and phase shift. This case can be described by the following expression:

Z(H)=Re [C(t)c"'“'+%cz(t)e_‘z""] (1.4)
where \

C(t)zHT(t)e"" O=A(O)+iB(1).
Thus, the absolute value of C(r) is the amplitude of the basic wave and the argument is the
phase shift.

In the proposed formulation it is assumed that changes in amplitudes and phase shifts
are so small within a period of the wave that for a neighbourhood of a fixed time it is possible
to assume that they are approximately constant.

Let us introduce the following notation:

ZO=XO+iY(O)=C(He"". (1.5)
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It follows in real variables:
X ()=A(t)cos wt+ B(t)sin wt
Y()=—A(1)sinwt+ B(f)coswt . (1:6)

In these notations the expression (1.4) assumes the follov;'in'g form:
14
LO=X )+ [X*()-Y*(0)]. )

Now let us assume that A(t) and B(¢t) are independent stationary gaussian processes
with average values equal to zero and the same correlation functions kua(7) where r=1,—1,,
1, 2t;. In such a case it follows that the average values of the functions X (t) and Y(1)

defined by (1.6) are equal to zero and the correlation functions are given by the following
formulae:

Kkxx(7)=kyy(t) =k, (7) cos wr
kyy(D)=E{X(t,) Y (t,)}= —'kM(‘r) sinwr. .8

The elevation of the free surface may be also expressed in terms of the function Z(t) by
the following relation:

C(z):Re[Z(t)-;—-;—Z’(t)]. (1.9)
It follows from the relation (1.6) that:

CCT=X*(1)+ Y*(1) = A%(1) + BX1) (1.10)

where C” is the complex conjugate.

Let us discuss the relation of the functions X(¢), ¥(t) to the pair of function X(¢), X (¢)
where X (¢) is defined as the Hilbert transformation by the following formula:

o0 3
~ X
X(t)=iJ- ) 4s (1.11)
4 t—s
—-®
In the special case of (1.6) when:
X ()= A(0)cos wt + B(0)sin wt (1.12)

substitution and integration in the sens of the Cauchy principal value yields the following
result:

X()=A(0)sinwt—B(O)coswt. (1.13)
Comparison with the relation (1.6) shows that: A
Y()=-X(1). (1.14)

The minus sign is insignificant as far as the envelope is concerned as defined by the
square root of the relation (1.10).
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Now it is possible to examine the general case. The relation (1.14) would be true in the
mean square sense if J defined by:

J=E{[Y()+X (O]} (1.15)
would be equal to zero. Substitution of (1.11) and (1.6) into (1.15) with the change of order

of integration assumed to be possible yields:

J=2kw(0)_% j kaa([‘—8|)sinw(s_ ) w

-0

(1.16)

s—t

In the case o goes to infinity and k,,(|t—s|) satisfies the Dirichlet conditions the ex-
pression for J goes to zero. The same is true for a constant correlation function, but this is
the case stated in the relation (1.12). In a general situation J is not equal to zero. For
example if:

ko (D)=k,(0)e™™ (1.17)
it follows:

4
J =2k, (0)—— arctg —k,,(0). (1.18)
oo

Thus, J goes to zero if @ goes to infinity or # goes to zero.

Tt is assumed in this paper that A(¢) and B(z) are slowly varying functions as measured
by the period T. Thus the correlation functions are close to constant functions and the value
of Jis small. In the case of the example with the correlation function (1.17) it means 7/wis a
small number.

The analytical signal defined by (1.5) is not obtained with the help of the Hilbert trans-
formation as given for example in the book [7] but as described in the book [8] where the
construction of the envelope is considered. For the present study the envelope is important
because it defines the local amplitude of the slowly in time varying Stokes’ wave.

2. The mathematical model

The measurements are given at discrete times t=rAt, where 4t is the time interval. Let us
consider a random sequence 4(0), 4(1), ..., A(r), ... described by the following stochastic
difference equation:

A (k+1)=24(k)+e A(k—-1)=aV (k+1), k=1,2,.. 2.1)

where # is a parameter with dimensions s=1, a is a constant and V'(2), ¥(3), ..., V(k), ...isa
sequence of independent gaussian random variables with expected values equal to zero and
variances equal to one, N(0, 1).
When the relation (2.1) is multiplied by A(k) and the expected value is calculated it
follows:
k(1)=k(0)/coshnAt
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where
k()=E{A(k+r)A(R)}=E{A(k—r)A(k)}. (2.2)
When the relation (2.1) is multiplied by A4 (k—r) where r=1, ..., k the following diffe-
rence equation is obtained: :

etk (k+1—1)— 2k (k—r)+e ™k (k—1-r)=0. (2.3)

It is easy to verify that the solution of (2.3) which satisfies (2.2) is given by the following
formula:

k(s)=k(0)e ™ [1l+stghndt], s=0,1,... (2.4)
When t=sAt is substituted and A¢ goes to zero it follows:
k()=k(0)e™"[1+nt]. (2.5)

This is the corresponding correlation function in continuum. When k(#) is differentiated
and 7=0 substituted it follows k’(0) =0. Thus the process is differentiable in the mean square

sense.
When both sides of equation (2.1) are squared and the expected values are calculated it

follows:

a=2\/1c_(()—)VtghnAtsinhnAt. (2.6)

To start the simulation of the sequence the first two random variables 4(0), 4(1) have to
be calculated. They should have the covariances k(0) and k(1) according to the relation
(2.2). Thus:

A(0)=+ k(0)V (0)

A(1)=A(0)/coshndt +/k(0) tghndt V (1).

2.7

It is easy to show that the sequence A(0), ..., A(r), ... corresponds to a stationary
process.

The second independent random sequence B(0), ..., B(k), ...is given by identical
relations. |

Thus, as in the relations (1.6) the random sequences X (k) and Y(k) may be calculated

according to the formulae:
X (k) = A(k) cos wkdt + B(k) sin wkAt
Y (k)= — A (k) sin ok 4t + B (k) cos ok t. 5

The calculation of covariance matrices corresponding to the correlation functions (2.2)

is straightforward. It follows:
k. (rdt)=k,(rdt)=k(0)e ™™ (1 +r tghndt) cos wr 4t
ko (rdt)=E (X (kdt) Y [(k+7) 4]} = — k(0)e ™ sinoor 4. i

Let us discuss the influence of the value of the parameter #. If  is equal to zero then
according to (2.7) A(1)=A(0) and the relation (2.6) yields a=0. Thus, from the difference
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equation (2.1) it follows that all A(k) are equal to 4(0). In the same way it follows that
B(k)=B(0) and A(0) and B(0) are two independent random variables with variances equal
to k(0). The sequences X (k) and Y (k) represent two trigonometric functions, Thus, when
the values of {(x, t) are substituted into (1.7) one obtains from (1.4) that C(kd4t) is a con-
stant complex number othe same for all k. The values H and ¥ are constants and the result
is a regular Stokes® wave. A
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Fig. 1. a) first component with varying amplitude and phase shift, b) the cor-
responding Stoke's type wave

Simulation

If 7 is small, there will be a slight modification of the Stokes’ wave. The absolute value
of Cas calculated from (1.10) gives the amplitude of X(¢) and ¥(z). The situation is ilustra-
. ted in Fig. la. The function of amplitudes corresponds to the envelope of the stochastic
functions X(7) and Y(¢). The graph shows a sinusoidal wave with a slowly varying amplitude
and phase shift. On Fig. 1b the corresponding Stokes’ wave is shown. -

The relations (2.8) may be written in the following matrix notation:

X(k)=9,(k) A (k) (2.10)

where
x (k)] coswkAf sinwk At]

_ . [A@y
X(k)'_'[y(k) - "’r(k)=[—sinwkm coswk 4t |’ A(k)_[B(kJJ'

It is easy to verify that:
?.(k)=0; (2.11)

_| coswdt sinw At
=l —sinwdt coswdt

where

is an orthogonal matrix and thus
A (k)=(9;)X (k). (2.12)

The stochastic difference equation (2.1) may be written in the following block matrix
notation:

A(k+1)]_[2e™1 —e ™[ A(k) o
[ A(k) ]_[ I (] ][A(k—l)]'“"’ + [o]v(kﬂ) (2.13)
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where Iis the (2 x 2) identity matrix, 0, (2% 2) zero matrix A (k) is the (2x 1) matrix defined
in (2.10) and V'(k)=[V(k), U(k)].
Substitution of expressions (2.13) and premultiplication by the following (4 x 4) matrix:

Tyk+1
[(“"0 ('p'; ,‘] : (2.14)

yields finally the following difference equation:

X(k+1)]_[2e™"", —e X[ X(k) —nae| O
[X(k) ]_[ I 0 ][x(k_l)]+“e [ 0 }V(Hl) (2.15)

The last term in the relation (2.15) needs discussion. The elements of the matrix V(k+1)
correspond to two independent random variables ¥(k--1) and U(k+ 1) with distributions
N(0,1). The multiplication by the (4 x 2) matrix corresponds to the following transformation:

k+ 1

v"'(k+1)=["’0 ]V(k+1). (2.16)

It is easy to verify that the random variables ¥*(k+1) and U*(k+ 1) have distributions
N(0,1) and are independent. Thus, the matrix V¥(k+1) has the same properties as the
matrix V(k+1) and they may be interchanged. Finally the relations (2.15) assume the
following form:

X(k'+1) 2e Mg, —eg™ 212 X (k) oulX
[ X (k) ]:[ I 0 ][X(k—l)]+ae t [0] (2.17)

Simple calculations yield the following expressions for the first two terms of the se-
quence:
X(0)=vk(0)V(0)

X (1)=(coshn41)~ '@, X (0)++/k(0) tgh 4t V(1).

By the relations (2.17) and (2.18) the simulation of the random sequence X(0), ...
ooy X(K), ... is completely de:cribed.

The relation (1.7) gives the elevation of the Stokes’ wave in terms of the functions X(¢)
and Y(z). Let us assume that there is an ob.ervation noise added to the true values. Thus,
the ob.ervation model is given by the following relation:

(2.18)

{(kd)=X (k) +% [X (k) =Y (k)*]+0, W (K), (2.19)

where W(k) is a white noise sequence with distributions N(0,1) and 0, is the standard
deviation of observation noise.

One can generate the sequences A(k) and B(k) and then calculate the corresponding
values of X(k) and Y (k) from the relacion (1.6). Substitution into the relation (2.19) leads
to an expression for the observation model in terms of the terms of the sequences A (k) and
B(k). It should be stressed however that in such a formulation the coefficients in the observa-
tion model depend upon the step k and the data processing involves computer time.
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3. The itefative solution

The mathematical model given by the equations (2.17) is a linear one, but the obser-
vation model is nonlinear. Thus the problem is formulated in a nonlinear theory.

One may consider the nonlinear term as a correction to the obaervatlons and rewrite
the relation (2.19) in the following form:

L (kA — (kAf)=hX (k) + 0o W (k) (3.1)
where :

Ckdy="[X (P =Y (9], h=[1,0].

Now the observation model is written in the standard linear form and the standard
Kalman filter method may be applied.

The estimator of X(k) based on the observation at times 1, ..., k denoted by X(k [ k)
is given by the following relation:
X (K|k) =X (k|k— 1) + K [ (k) = L) X (k|k—1)] (3.2)

where i(k | k—1) is the estimate based on the data at times 1, ..., k—1, K is the Kalman
matrix.

To calculate {.(k) according to (3.1) the values of X (k) and Y (k) are needed and they
should be approximated by the estimates X (k | k), Y(k | k) which are not known at that
time. An iterative solution is used. As the first approximation the predicted estimates
X (k| k—1), ¥ (k| k—1) are used and the first approximation denoted by XDk | k) is
calculated. In the second approximation these values are substituted in the formula for
the correction term and the second approximation for X®(k | ) is calculated. Thus, on
this way a sequence of approximations is obtained. When from the n-th approximation
the n—1 is substructed it follows: '

ﬁ(n}_i(nﬂ1)=th [ (X~ D)2 4 (X~ D)2 4 (Y- D)2 (y@-2y2] 53.3).

The expression in the square brackets on the right side includes differences of squares.
One can write then as products of sums and differences. Then the expression may be con-
sidered as the scalar product of two vectors one corresponding to the differences denoted
by 4X™ Y and the second to 2X(k). (It is assumed that the sum may be approximated
by the second expression). The product of two vectors is smaller than the product of their
absolute values. The length of the second vector is equal to H(k) that is the wave height
at that moment. The result is the following inequility:

[AX(")]< H(k)[ ]\/(AX(J!-IJ)Z_F(AY("—Q)Z- (34)

4Y®
If the Euclidean measure is used it follows:

Jax|< L 1o VT RE X, 69
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For convergence the coefficient should be smaller than one, which gives the sufficient
condition. For typical cases of Stokes® waves the condition is satisfied. It must be remem-
bered that the ratio H/k can not be arbitrary. Practical applications shoved that the first
approximation gives already a good estimate.

4. Conclusions

To verify the proposed mathematical model measurements of water elevations were
taken at two points in the wave flume of the Institute of Hydroengineering. The mathe-
matical model was used to decompose the measurements into a Stokes’ wave and a free
wave with the doable frequency of the wave generator.

The calculations showed that the proposed procedure is an effective tool for data pro-
cessing. The purpose of the present paper is to present the method and therefore it is not
necessary to show all the results of the experiments. To get an insight the results of one
experiment will be presented. For example in one experiment from measurements a two
points along the flume filled up with water to the depth A=0.35 m for the assumption
that there is a Stokes’ wave only the respective heights wete 0.1136 m and 0.1087 m with
the same periods equal to 1.10 s. The data were decomposed with the help of the propo-
sed Kalman filter and for the Stokes® wave the corresponding heights were 0.1061 m and
0.1070 m with the unchanged periods and for the free waves the heights were 0.0058 m
and 0.0064 m with periods 0.570 s and 0.576 s.

According to the theoretical model the difference between the measurements and the
sum of the estimated components should be a white noise. In some cases especially for
greater HJh ratios the third harmonic could be trated in the difference. There is no diffi-
culty to supplement the model by a free wave corresponding to the third harmonic. To
include higher terms in the Stokes’ approximation is more complicated and the necessity
is open for discussion and further research.

In the proposed method the nonlinear problem for the Stokes® wave is reduced to
a linear mathematical model and a nonlinear observation model. The problem is linea-
rized so that the standard Kalman filter method can be applied. This is done by following
the idea of Stokes’ approximation by successive iterations. A formula for the estimation
of convergence was derived and practical applications showed that in the majority of cases
the first approximation is sufficient because in the measurements the time interval At
was small compared to the period of the generator T and the predicted value was very
close to the estimate. :
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Model matematyczny dla analizy fal wodnych typu Stokesa
Streszczenie

Liniowa teoria falowania wodnego jest stuszna dla fal o malej amplitudzie w poréwnaniu z diugoscia
fali oraz glebokoscia akwenu. Stokes podal przyblizona teorig fal nieliniowych opracowana przy wy-
korzystaniu metody matego parametru. W niniejszej pracy podano model matematyczny pozwalajacy na
symulacje fali typu Stokesa o mato zmieniajacej si¢ amplitudzie i przesunigciu fazowym w czasie jednego
okresu. Obwiednia falowania jest funkcja losowa. Dla zagadnienia dyskretnego w czasie opis sprowadza
si¢, do liniowego modelu matematycznego w postaci stochastycznego macierzowego réwnania réznico-
wego oraz nieliniowego modelu obserwacji. Analiz¢ danych pomiarowych dokonuje sie metoda kolejnych
przyblizefi stosujac w kazdym kroku metodg filtracji Kalmana. Metode zastosowano do dekompozycji
pomiaréw falowania wykonanych w kanale hydraulicznym Instytutu Budownictwa Wodnego na fale
Stokesa oraz fal¢ wolna o podwojonej czgstosci. Badania modelowe potwierdzity przydatnoéé propono-
wanej metody.

MartemaTH4ecKkasi MOe/Ib I aHAIN3A BOJH Ha Boje Thma Crokca
Conepxanue

B pabore npencrannena Mofiellb NO3BOJIAIOLIAs CHMYIMPOBATE BoIHY ThHna CTOKCA ¢ Malio MeHAo-
melics aMIMTY10# # (ha30BEIM CIBHTOM HA NPOTAKECHHA OOHOTO nepropa. s 3amauu MHCKpeTHOM 1o
BpeMEHH ONMHCAHHE CBOAMTCA K JIMHEHHOM MaTeMaTRIeCKOl MOJIeIH B BHIIE CTOXACTHYECKOTO MATPAYHOTO
Pa3HOCTHOTO ypaBHEHHA W HeJIMHeHHOH Monenu Habmonenna. AHann3 JaHHbi HIMEPEHNit MpPOM3BOAMTCS
METOZIOM TIOCIeIOBATeTLHBIX PHGITHXerHiH ¢ TpAMEHEEReM MeToaa ¢unsTpanun KajbMaHa HA KaXIOM
mary. DKCHEPHMEHTANBHbIC MOJCTLHBIC HCCASHOBAHAS B THAPABIMYECKOM JOTKE NONTBEPIHIA IpH-
TOOHOCTh pa3paboTaHHOro MeTona.



