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A new approach to the analysis of wave propagation
directions

In the paper a method of determination of the wave direction based on the Kalman
filter method is proposed. Suitable linear mathematical and observation models are
established for a fixed main direction of propagation. A method is proposed to calculate
the direction which corresponds to the measured data. The proposed Kalman filter may be
used to decompose the measured waves into approaching and reflected waves.

1. Introduction

In many ocean engineering problems the knowledge of directional spectial densities of
surface waves is of primary importance. In standard methods measurements of surface ele-
vations are taken at a few points and then the dirzctional spectral density is estimated. In the
neighbourhood of a breakwater there are reflected waves and the random wave field is
not homogeneous in space. It is advantageous for the analysis to decompose this field into
a set of progressive, homogenous wave fields.

In the analysis it is usally assumed that the wave field is a linear superposition of small
amplitude sinusoidal waves. For each wave the dispersion relation of the linear theory is
valid. Such an approach makes the application of the theory of linear transformations of
random fields possible. In reality the wave field is not linear and one can not assume in
advance that all the relations of the linear theory are valid.

In the proposed approach the measured values are approximated by a sum of com-
ponents which are samples of random fizlds defined by the corresponding mathematical
and observation models. In the mathematical and observation models it is assumed that the
components are narrow band stochastic processes with'slowly in time and space varying
amplitudes and phase shifts. For the dominant angular frequency the corresponding wave
number is calculated from the dispersion relation. It is assumed that the randomnesses in
space and time are statistically independant. The proposed mathematical and observation
models do not describe the physics of the wave field but are used as a tool in filtering of the
measured data. The applied filtering eliminates the measurement noise and defines and
facilitates the determination of the main wave directions.
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2. A random propagating wave

Let us take a cartesian coordinate system x*, x* and a direction of propagation fixed by
a unit vector e, which makes with the positive x! axis an angle a.

Let us consider a homogeneous, isotropic random field 4(r, ¢) with an equal to zero
mean value and a correlation function defined by the following expression:

K(;l » ;2 tl L] tl) =K (0) e_’lP (1 + "p) e nr(l -+ KT) (2. 1)

where p=|f,—7y|, 7=|t,— ], # is a parameter with dimensions m™", x is 2 parameter with
dimensions s~* and K(0) is the variance.

A second statistically independent random field B(r, ¢) is formed with identical sta-
tistical properties.

Now two random fields X(r, t) and ¥(r, ) are formed according to the formulae:

X(r,0)=A(r,t)cos (ko ey T—wot)—B(r, H)sin (ko eo F—wqt)

Y(r,)=A(r, ) sin (ko €0 —w, )+ B (r, ) cos (ko €y F =g 1) @2
where w, is the dominant angular frequency and k, the corresponding dominant wave
number.

In the case the parameters #, x are equal to zero A(r, £) and B(r, t) reduce to two in-
dependent random variables and the random fields (2.2) reduce to two regular waves with
random but equal amplitudes propagating in the €, direction with a phase shift between
them equal to ©/2. The random amplitudes and phase shifts are slowly varying in space and
time functions if the parameters # and x are so small that the random functions 4(r, ¢) and
B(r, t) change very little in the wave length L=2n/k, and period T=2zn/w,. It means

mlel, 2«1 (2.3)
ko o

The mean values of the random fields are equal to zero and the correlation functions of

the random fields X(r, t) and Y(r, t) are identical and expressed by the following relation:

Kyx=K (0)e ™ (1+np)e™ (1 +x7)cos (ko pcos (g —a) —a, 7) (24)

where g is the angle between the direction 7,—r, and the positive x! axis.
The cross-correlation function is given by the following relation:

Kyy=K (0)e™"(1+np)e”*(1+xt)sin (ko p cos (p—a)—wq 7) (2.5

It is easy to see that at a given time 7 =% and given point in space p=0 the fields X(, #) and
¥(r, t) are uncorrelated.

From the relation (2.4) it may be seen that for a fixed point in space the random functions
X(2) and Y(t) represent random waves in time with a dominant frequency equal to w,.
For a fixed time 7=0 the functions X(r), ¥(r) represent random waves in space with a
dominant wave number equal to ko cos(p—a). If the vector 7 is parallel to €0 the wave
length is equal to 2n/k,, if these vectors are orthogonal the dominant wave length goes to
infinity and the samples of the process do not show any regularity as far as wave lengths
are concerned.
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" A good insight into the nature of the random fields gives the space-time spectral density
defined by the following Fourier Transform: :

1 i & 0
f f f Kxx(g,7)cos (k- §) coswr dg'dg’dr (2.6)

(2n)*

where g=7,—7,,q,, ¢, are the cartesian components, ki=kp cos(p— B) where k is the
length of the vector k and B is the angle between this vector and the positive x! axis,

When the relation (2.4) is substituted and the integration is performed after tedious cal-
culations it follows:

Sex(ksw)=

B Sxx(k , 0)=S (%) S(w) £y @7

3 _x3 1 1
| (“’)_?[[x“+(w+wo)2]2+[n2+(w—wo)2]2]’

b=l xOy 21

205 KOL e

It <[+ o], k3 =[] | | |
Thus, in the assumed mathematical model the space — time spectral density is equal to

the product of the time spectral density and the space spectral de'x:ls:ity. It is not the
spectral density of the surface waves for which the wave number is connected with the wave
frequency by the dispersion relation for each component. =

j ; .

%

3. The discrete mathehmtical and observation models’
4 -4 ’

It is assumed that thie surface elevation is measured at n points. The cartesian coordinates
of the i-th point are denoted by x} , x7. The sample values of the random field at the chosen
points may be represented by the following ¢column matrix A4:

AT=[A(x], 53,0, A3, %3, 1), e, A(x2, 32, )], (3.1)
For a fixed time for example 1—40, the values of the elements of the covariance matrix

K, 4 may be calculated. The covariance matrix is symmetric. By a linear orthogonal trans-
formation the matrix may be reduced to a diagonal form. It follows: : '

_ : A=LD A 5]
where D is a column matrix of uncorrelated random variables and L is an orthogonal;
matrix L~!=L". The diagonal covariance matrix K, has on its diagonal elements equal to
the eigenvectors of the matrix K, and the columns in the matrix L correspond to the nor-
malized eigenvectors. : : \ \ern o

For example for a unilateral triangle with sides equal to s (Fig. 1) the matrices Kpp and.
L are expressed by the following relations; ! ;

K@©0)+2K(s) O 0 v o owe).
Kpp= 0 K(0)-K(s) 0 |- L={y¥3 -1v2 —1v6| (3.3

“ 0 0 K(0)-K(s) V3 —1v2 —1¥6
where K(s)=K(0)~"(1 +1s). oo :
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It should be noted that when 1 — 0 the elements on the diagonal of the matrix IE,,D have
limits 3K(0), 0, 0. For small randomness, as it is assumed in this paper the values K(0)— K(s)
are much smaller than K(0)+2K(s).

x3
—a—
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e ot
r2 r
l | X'
‘l’ o
—
3 e |
2 3¢ L,
_0 -_—
' Fig. 1. Unilateral triangle of measurement Fig. 2. Square of measurement points

points

In the case of a square with sides equal to a (Fig. 2) the matrices Kppand L are:

K(0)+2K(a)+K(\/2a) © 0 0
= 0 K(0)—K(a) 0 0
Koo= e 0  K(0)-K(a) 0 3.4
0 0 0 K(0)—2K (a)+ K (,/2a)
Factiadt .

Iy O 3 R G Je |

L=——
Jalt -1 -1 1
1 1 -1 -1

where K(a)=K(0)e™"(1 +na), K(Jia)= K(0)e-n'2a(1 +\/5aq).
When 7 — 0, as before the matrix K pp is singular with elements on the diagonal equal to
4K(0), 0, 0, 0. '
Now the variability in time will be considered. As in the paper [1], it may be described by
the following stochastic difference equation:

e“4D,(k+1)—2D(k)+€ *4'D(k—1)=a,V (k+1), (3.5)

where a;=2vd,(0) \/ tgh(xdt) sinh(x4t), 4t is the time interval, d,(0) is the variance of the
random variable D, as given in the matrix :
The clements of the covariance matrix of the random variable D; are given by the
following ‘expression [1]: | '
s N K(k)=d(0)e (1 +ktgh(xdt)) " (3.6)

The parameters k may have different values for different random variables D,. The same
values were assumed to simplify the calculations.
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According to the formulae for linear transformation the covariance matrix for the
random vector 4 is given by the following expression: '

Kua=LKp, I' ¢ ™4 (1 + k tgh (x41)) (3.7)

It is easy to verify that in the case 47 — 0 and kA4t — ¢t the expression (3.7) reduces to the
expression given in (2.1).

Let us assume that the sequence of the elements of the random vector D (n) is given and a
second sequence E(n) with identical random properties is constructed. It is assumed that
the sequences D(n) and E(n) are statistically independent.

Let us construct two stochastic vector sequences by the following relations:

n n
X‘(k) = 2 LU‘DJ(k) cos (ko Eo b ;i —Wq kA’)_ ZLU Ej(k) sin (ko Eo' T:;_wO kdt)
Jj=1 j=1

L n (38)
Yi(k) = Z Ll'f Dj(k) sin (kozo '-;'i —Wq kAt) + E Ll-j El(k) Cos (ko-éo '-'."- — @y kdf)
J=1 ji=1

where w, is the dominant angular frequency of the waves, k, is the corresponding wave
number, 7, is the position vector to the i-th point and ¢, is a unit vector describing the
average direction of wave propagation. This vector is given by the angle « which &, makes
with the positive x' axis.

The mathematical model may be written in the form of the following block matrix

expression: ;
D(k+1) e KA _ o -x24tf D) e
[ bk ]=[ i ][ﬁ(k+1)]+[o’] YD 39

wherz D'(k)=[D,(k), E(k), ..., D,(k), E(K)), I is a nxn identity matrix, O is a nxn

matrix with all clements equal to zero, g1 is a diagonal # x n matrix with elements equal to

ae™™, Y(k+1)isanx 1 matrix of independent random variables with distribution N/(0, 1).
The observation model is given by the following relation:

Z(p)=X{(p)+0, W(p) (3.10)

where X(n) is given by the first of equations (3.8), o, is the standard deviation of the obsar-
vation error and W(0), ..., W(p), ... is a white noise gaussian sequence with N(0, 1).

With the help of the relations (3.8), (3.9) and (3.10) the expressions may be witten in a
standard form suitable for the application of the Kalman filter proccdure as esteblished in
the paper [2]. A good presentation of relations is given in the book [3], and the application
to the analysis of vibrations of cylinders in fluid is discussed in [4].

In the considered case the mathematical model is stationary in the sens that the coeffi-
cients do not depend upon time. The observation model in view of the relations (3.8) and
(3.10) has cocflicients which depend upon time. ‘

Up till now only one component with a dominant frequency and one dominant propaga-
tion direction was considered. If there are two directions, as in the case of a reflected wave,
a global model may be constructed expressed by matrices with twice so many elements D;,
E;, assuming that the coming and reflscted waves have appropriate directions and are sta-
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tistically independent. If there are more components with different dominant frequencies,
the extension is straightforward but the amount of algebra increases significantly. It depends
upon the data and the specific problem what kind of a dsscription should be chosen.

3.0

2.1

¢II$I||I||||1B!OI|||ulliz'l70||1tl|1136c}

| S 2T . R

Fig. 3. The measure M as a function of « for oy=60°

To check the procedure a program on a PC IBM computer was written to simulate the
data and to filter them with the help of the described Kalman filter. If in the simulation and
the Kalman filter the same parameters are used the filtering results in the elimination of the
observation noise.

The dominant frequency may be easily estimated from measurements when the spectral
densities for individual points are calculated. It is more difficult to sstimate the main direc-
tion. To look at this problem different angles a were taken for the simulation and filtering.
The result was that the differences between the simulated and the filtered data was not large
although the differences in angles were considerable. This somehow unexpected property
results from the fact that in the family of samples of the random ficld large deviations from
the main direction are possible, although the probability is low. As it was mentioned before
for a slow variability of amplitudes and phase shifts the variances of the coefficients D,,
E;, ..., Dy, E, are very small compared with the variances of D,, E;. Let us introduce a
measure M defined by the following relation:

, V(D)+V (E)+...+V(D)+V(E,)

M= V)LV (E) t1h

where ¥(...) means the estimate of the variance.

An example was calculated with the following data: T'=1s, ky=4.0243m",d=10m —
water depth, o =60° k=0.01s"*, #=0.01 m~1, A4t=0.01s, a unilateral triangle with sides
s =1 m. For the data simulated with the above given parameters in the filter different values «
were considered and the values of M as a function of « is plotted in Fig. 3. It may be seen
that =, gives the global minimum, but it should be stressed that in calculations one must
be careful because when calculations are started far from the real value a local minimum may
be approached.

When the direction which corresponds to the global minimum is determined the filtering
of the data may be repeated with the new parameter for the direction to obtain a better
approximation of the main propagation direction.
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4. The determination of the direction of propagation

Let us assume that the random field is deterministic in space. Such a situation may be
obtained by the limiting case # — 0. In this case, only the variables D,(n) and E(n) are not
equal to zero and the water elevations at a point i may be described by the following ex-
pression: o

X! (k)=L; DY (k)cos(kye* Fi—wo kdt)—L;; EY(k)sin (ko e* - F,—wok )  (4.1)

where the values denoted by a star correspond to the case 57 — 0.

The expression (4.1) can be a starting point for a mathematical model. However in such
a formulation the coefficients D,(k), E;(k) and the direction e(k) are unknown and the
problem is described by a nonlinear mathematical model. In the general nonlinear case
there are no simple filtering procedures, the problem becomes complicated and approxima-
tions have to be introduced to obtain an effective procedure,

Let us use the previous results to obtain a simple procedure. If the angle between the
vector e* and the positive x! axis is denoted by x+ A« then the vector de=e*—g, is ex-
pressed by the following relation:

de= [(cos Ax— 1) cos a—sin dasin a]i + [sin o cos o+ (cos da—1)sina]j  (4.2)
Substitution of the relation (4.2) into (4.1) leads to the following expression:
X (k)=L;, [D¥(k) cos (ko 4e - 7)) — E} (k) sin (ko 4€ - 7))] cos (ko € * Fy— o kdt) —
—L;, [D¥(k)sin (ko de - 7))+ Ef (k) cos(ko 4é - 7y) sin (Ko ey Fi—wo kdt).  (4.3)

Now let us compare the values given by expression (4.3) with the first relation in (3.8).
For a known angle 4« and a fixed point 7 the following relations may be obtained for the
values D}, E? for each point:

n
DY (k) . Ly' ¥, LyDyk)
[' ]_[ cos(kode-ry) sin(kOAE-F,)] j=t @4)
EX(k)| | —sin(kodeé-r) cos(kode-r, L .
il( ) ( 0 !) ( 0 i) Lﬂi Zl Lqu(k)
j=

If the field is deterministic in space and time (regular sinusoidal waves) and the same

angle is used in filtering, then for da(k)=0 relations (4.4) lead to an identity D (k)=D,,
i

E}(k)=E, for all points i. For a random field the values calculated according to (4.4) are
i

different for different points. The estimator which corresponds to the least square error is
. equal to the average value. Thus for n points:

1
DI()=— 3. DIK),. Ef(k)=

i=1 i i

L3

3 EXk) £ EHORS)
=1 i

ERIE

and the mean square error is expressed by the following relation: -

I= 3 (DYDY +EIO-EXOY]. “6)
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We define the actual direction by such a value of 4o which makes the mean square error
a minimum. For a perfect sinusoidal wave J is equal to zere and for a random wave the
value of J is a measure of randomness.

In the general mathematical model, when the distances between the points go to infinity
the measured values at the points i become uncorrelated. In the simplified relation (4.1) it is
assumed that the distances are of the order of a wave length and that the variability of
amplitudes and phase shifts within a wave length and time period is so small that an assump-
tion of almost constant values is justified.

50 500 50 “—fge 85° 70° «+Aot

Fig. 4. The mean square error J as a function of -+ da for a=50°
and ¢n=60°

To get an insight into the procedure the parameters used in the example shown on Fig. 3
were used to simulate the measurements. Then the data were filtered with «=50° instead
of o =60°. The calculated values at a chosen time step were used to plot the curve of the
function J on Fig. 4. It may be seen that there is no problem to find the minimum in this
case. However if the range of A« is increased there will be more local minimum values and
one must be cautious in calculations. :

5. Conclusions

1. If the random field is homogeneous in space the data in all points have the same sta-
tistical properties. If the statistical properties are different one may expect that there are
approaching and reflected waves.

2. The proposed mathematical and observation models are able to decompose the
measured random field into homogeneous random fields corresponding to random
progressive waves in main directions (approaching and reflected waves).

3. For a homogeneous random field, it is possible to measure the deviation of the
assumed main direction by considering the measure M introduced by Eq. (3.11).

4. For small distances between the points of measurement (of the order of wave length)
and small randomness in space and time, it is possible to represent the progressive wave as
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a wave given at the center of the measureing points with slowly in time varying amplitudes,
phase shifts and directions of propagation.

5. The nonlinear problem is solved in steps. The nonlinearity is reduced to the problem
of looking for the minimum of the mean square error defined by the expression (4.6). The
calculations may be repeated with new parameters to obtain a better approximation.

6. The calculated sequence of directions changing in time may be used to find the sta-
tistical properties of the sequence when ergodic properties are assumed.
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Nowa metoda analizy kierunku propagacji fali wodnej

Streszczenie

W pracy zaproponowano nowq metode¢ analizy kierunku propagacji fali wodnej opracowana na
podstawie teorii filtracji Kalmana. Okreslono liniowy model matematyczny oraz model obserwacji dla
ustalonego kierunku propagacji. Zaproponowano metodg¢ obliczenia kierunku propagacji odpowiada-
jacego danym pomiarowym w danej chwili czasu. Skutecznoéé metody sprawdzono na danych otrzyma-
nych przez symulacj¢ komputerows. Proponowany filtr Kalmana moze by¢ wykorzystany dla rozkladu
danych pomiarowych na fale padajacg oraz odbita.

Hosuiii MeTo aBa/M3a HANpAB/ICHAS PACHPOCTPAHCHHN BOMHLI HA BoJe

B pabote npennoxeH HOBBI MeTOA AHANH3A HANPABIEHHA PACIPOCTPAHEHMS BOJHBI HA BOJE, pac-
paborannsli Ha 0cHOBe TeopuH QunbTpaan Kansmana. Onpeneniena niReliHas MaTeMaTHIECKas MOJETE,
a TaKKe MoJeNs HAOMIONeHNS U1 PMKCHPOBAHHOTO HANpABIeHHs pacnpocTpaderus: IIpeiioxker MeTon
pacyeTra HampaBlieHMS PACNPOCTPaHeHHs, COOTBETCTBYIOIIEr0 MAHHLIM H3MepeHHit B NaHHBII MOMEHT
BpeMeEn. DddeKTHBHOCTE METOLA NMPOBEPEHA C MOMOIIBIO JAHHAIX, MOJIYYCHHBIX CAMYJAUHedt Ha 3BM.
IMpeanoxennent ¢punsTp KaneMana MOXHO HMCHONB30OBATE [UIH PA3iOKEHHS M3MEDHTETbHBIX NAHHBIX
HA NAJAIOMYI0 H OTPAXEHHYIO BOJIHEL



