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Analysis of spatial models of turbulence

1. Introduction

The term “model of turbulence” describes a set of informations, which enables one to
close the system of Reynolds equations with respect to the tensor J7 (p=const):

divu=0, = | (1
du A
pE=pf—gradp+,uAu+dwﬂ. 2)

Symbol u denotes mean velocity, u' — velocity fluctuation, p — fluid density, £ — unit
mass force, p — pressure, x — dynamic coefficient of viscosity, IT — Reynolds tensor:

IT= —puju;. : 3)
LJ
In the bibliography of the problem under consideration one can distinguish two main
classes of turbulence models, viz. “diffusive” and “diﬂ'erential"i
The first one is based on the assumption that turbulent fluctuations of fluid elements as
well as chaotic fluctuations of molecules are of the same character. This assumption, ac-
cording to the classical Boussinesq-Prandtl hypothesis [3], leads to the conclusion that the
Reynolds tensor is a linear function of the mean strain rate tensor. The proportionality
factor in this constitutive equation is called “coefficient of turbulent viscosity” (kinematic
vz or dynamic ur = pvy). There are many specific models of turbulence which give us op-
portunity to describe this coefficient [3, 10] — beginning with the si mplest assumption that
#r=const, through the classical P:andtl “mixing length hypothesis”, up to more elaborat-
ed ones. An example of the latter is given by Prandtl—Kolmqgoroﬂ‘ proposal, according to
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which the scalar coefficient of eddy viscosity is given by the following formula:

luT=p\/Elms (4)

where k is a kinematic energy of turbulence, related to the mass unit, defined as:
k=3 +u)’ +u;?) (5)

and can be calculated from Eq. (26). Symbol /, in tutn denotes the mixing length (or scale
of turbulence). R ;

The models belonging to the second class (“differential’’) consist of the system of equa-
tions of turbulent stress conservation, These equations have the following general form

3, 51
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Models of turbulence which one can find in the bibliography are properly worked out
and well studied for simple cases, especially for one-dimensional flows. But practical needs
and development of computational techniques provoke that recently investigators more of-
ten reach for two- or even three-dimensional models of turbulence.

It turns out then that constitutive equations for spatial models of turbulence have some
important formal features which have essential influence on the final effect (no matter which

f.iarticular model has been applied). An analysis of these problems is presented below.

2. “Diffusive” models of turbulence

According to the Prandtl-Kolmogoroff model, which has been mentioned above, the
Reynolds tensor I7 is a linear function of the mean strain rate tensor S. In the bibliography
concerning this problem one can find different particular versions of constitutive equation
[1, 3]. Let us analyse these proposals, from the simplest one, up to the most general, using
some experimental data obtained for one-dimensional mean flow:

u=u(y)i. NG

A typical velocity profile is shown in Fig. la, and normalized components of the tensor
I — in Fig. 1b.

2.1. Scalar coefficient of eddy viscosity, homogeneous constitutive equation

In the simplest case we have the following relation:
ﬂu=l—lr S;j- (8)

The analysis of the equation leads to the conclusion on the following defects:
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A — when S;;—0 (but u#0, i.e. the flow is uniform) then IT;;—0, what is in contradict-
ion with observations (isotropy, [3]);

B — each component of the tensor /7 in (8) is a function of only one component of the
tensor S; this fact disables us to describe spatial structure of turbulence; for instance in one-
dimensional case (7) only M, = IT,, #0 and other components are equal zero what is m dis-
crepancy with experimental data (Fig. 1);

C — traces of both sides in (8) are inconsistent:

tr 1= —2pk <0 9
whereas:
tr(prS)=prdivu=0 — for p=const.
dp (19
tf(#rs)=l-lrdi""—--—~——>0 — for p=var.
p dt

D — turbulent normal stress IT;; is a non-positive value (from the definition, see 3,
whereas in (8) it depends on the sign of S, which can be positive.
Reassuming we can state that these faults disquality (8).

2.2. Coeficient of eddy viscosity as a second-rank tensor, homogeneous constitutive equation

Relation z(S) in this version is written as follows:

_ Ij=pruSi (11)

In Cartesian coordinates we have the following system of equations:
o=y Sec+ Hrxy Sxy +lres Sy, (12
Hyy=ﬂ1’.'yx Syx"l' “hyS”+an Sy: (13)

I =pr., Szx+”1"z.1f Sz¥+ﬂrﬂ Sas (14)
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.y =pirsx Syxt Bray Syy+ By Sye (15)
Iy, = prys Syx+ Mryy Siy+ Brys Sxz (16)
I = s SoxF Brxy Szy+ Brxe Se: (17)
112 = P22 Sxxt Prey Sxyt P12z S (18)
Iy, =pirys So+ 14y Sey+ Hrys Si (19)
Iy =prex Syt Brey Syy+ Hre: Sy . (20)

We can enumerate the following flaws of this model:

A — see point A in paragraph 2.1.;

"B — according to (9) tr IT<0, whereas this value calculaled from (11) can change its
sign; ;

trlI=pg;; ;S0 (21)

which depends on the combination of signs of tensor S components;

C — for one-dimensional velocity field (Eq. 7) we have IT,=1II,,= II,,-O what- is
in contradiction with experiments (Fig. 1);
....D — representation of the tensor II in (11)is asymmetric — e.g. according to (15)
and (16) II., #11,,, whereas these values must be equal from the definition (3);

E — see point D in paragraph 2.1. go

As it is seen, displacing constitutive equation (8) by( ll)worsens the situation and the se-

cond version has more defects than the prev:ous one.
! !

2.3, Scalar coeﬂiclent of ec!dy viscosity, non-ho_mogeneo_ns cpnstituﬁve equation

" In this case it is assumed that the relat:on %(S) contams a tcrm which does not depend on
tensor S: ;

IT=px, Eu+#r Sy (22)
Where E,; — unif tensor. b"'ml,"‘_‘”rin_& the traces of this equation we have: pa s
tr = —2pk=3ur,+prdivu . (23)

hence:
R T Hro= —%pk—}urdivu ‘ (24)

and we obtain instead of (22):

j=—Gpk+iurdivu) E;;+ ur S;;. (25)

Thus defined model enables us to remove defects described in points A and C of para-
graph 2.1, but is subject to other negative features:

‘1A — see point B in paragraph 2.1.;

B — constitutive equation J7(S)contains a new parameter “k”(kinetic energy of tur-
bulence, (5); in order to determine this value we have to use the equation of the energy
¢opservation, which can be obtained from (6) as'a sum of three equations for normal
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stresses:
' dk ——u, 1 ooy
——+(uV)k’—— ,Eﬂ_-qu'Hu'Auz -(25)
X P

In this situation the turbulence model becomes more complex and takes over de[ects of the
“differential” family (see Chapter 3);
C — this model does not guarantee that the condition

Ily= = pro+ pr 5 <0 27
to be fulfilled.

vy ol
AV R

2.4. Coefficient ur as a ucond—rmk tensor, lnhomogeneous constitutive equation

Ideas more complex then the previously presented have been proposed by Ianmmov
[4] who assumed that: .

53 fnatey

My=—2poy; k+3 (i Siy+ prp S) i 1B (3.5
where:
;=0 for i#j 1
Eh i } @)
ay#0  for i=j

Analys:s of Eq. (28) leads to the following conclusxons ;

“A"="the set of constitutive variables is not complete (e. g relatlon whlch descnben
11, does not contain S,, what is not justified);

B - traces of both sxdes of Eq. (28) are not equal in general case;

D — see point B in paragraph 2.3.;
E — coefficient & must be deﬁned as folloWs
o = KE‘ J] (30)
othe‘l"w:,se o ,:isf nota ter{sof:Which can fulfil (29).

2.5. Coefficient yr as a fourth-rank tensor, inhomogeneous constitutive equation

TG B350

" 'Theé-tnost general linear relation between tensors IT and S has the following form [13]

(gl n "R Htj__'”To‘Ei]"'#ﬂjlm Sim: : -(31)
By analogy to Eqs. (23), (24) we have:
(V) tr 1= ~2pk= 3,ur,+tr(y,-S) (32)

hence: |
- U bpg= <3pk = ¥tr (ur S) (33
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and: i
= —[3pk+ 3} tr (ur S)] Eij+ trijim Sim- (34
This form of (31) makes it possible to avo:d many defects hsted in previous paragraphs,

but still some flaws remain:
A — the sign of turbulent normal stress depends to a certain degree on signs of tensor S

components, so it is not excluded that in the course of calculations we can obtain posttwe
values of IT;;;

B — see point B in paragraph 2.3; 7

C — the function k in Eq. (34) has been introduced formally what has negative con-
sequences during experimental identification of the parameters occuring in the model. In
order to prove this statement let us consider a one-dimensional flow as an example (Eq. (7)).
According to (34) we have:

HH o i’pk . i'sxy(”Txxzy + pfyyxy + ﬂ]"zzxy) + Zuﬂixy S.\'y . (35)

It is a system of three equations (i=x, y, z) with three unknown values. viz. fry sy,
Hryyzys BTezxy. Determining I, I1,,, II,;, k and S,, from experimental data (see Fig. 1)
we can try to solve this system with respect to eddy viscosity coefficients. The system can
be written as follows:

v

2#1':::3 = HBryyxy™ HTzzxy™ ﬁ 1
—HBryxxyt 2”1'”::; - #T:zxy =p, (36)

~HTxxxy™ #ijxy + 2”1'::1‘)' - ﬂ 3 )
The determinant of this system is equal zero which means that it is impossible to t;;ém-
pute coefficients of eddy viscosity from experimental data; \
D — the model contains a considerable amount of parameters; even if we take into ac-
count the symmetry of the tensors /7 and .S the total number of independent coefficients as
equal to 37 (36 ur coefficients and the kinetic energy of turbulence k).

2.6. Some corrections of diffusive model

As it is seen from our considerations, the family of diffusive models of turbulence pos-
sesses many essential defects, which practically disable us to apply this concept for spatial
flows with full confidence, no matter in which way coefficients of eddy viscosity have been
described.

Let us note that these defects are related in general to normal turbulent stress. Hence one
can come to the conclusion that it can be profitable to neglect diagonal components of the
tensor II. There are two possibilities — we can neglect them partly or totally.

In the first case [2, 10] we can combine the term ur, with the pressure p, writting Eq. (2)
as follows:

P = pf—grad pyt pdu+div (i) @n

where: i
P=pt+pr,=p+ipk+4tr(usS) (38)
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9

Such a procedure (analogical to Pascal’s assumption about isotropy of static pressure
[7]) is partly justified because of the fact that each pressure pick-up reacts on two factors —
static pressure p and dynamic pressure which includes the factor ur,. However it is rather
impossible to separate these two factors analytically.
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The basis of second possibility associates total turbulent normal stress with the static:
pressure. Components IT;; of the tensor IT are in fact different (see Fig. 1 and other experi-
mental data in Fig. 2a [8] and Fig. 2b [12]), so the considered suggestion requires averaging
of adequate functions. To average in the most convenient way the following assumption

can be used:

—pulx —pu? > —pux —3pk.

(39

In this manner we can replace the Reynolds tensor IT (Eq. (3)) by a certain tensor A:

Now we can divide 4 into diagonal part 4, and non-diagonal part 4,:

—%pk  —puiu, —pusu;
OD=Ax| —pu u, —3pk —puyu;
—puzu; —puyu; —%pk

A=A+ 4,
A,=—3%pkE
A;=A—3pkE.

(40y

(41)
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- - We can combine the term A, with static pressure defining the total normal stress p,:
=p+3pk . @

and the Reynolds equation assumes the form:

du .
p—aT—pf—gradp,+Mu+de, (43)

where according to the contents of Chapter 2 tensor A, is a linear and homogeneous func-
tion of mean strain rate tensor S:

A=prS,  Auj=b1ijimn Sim- ' (44)
Taking into account symmetry of 4, and S, and introducing relation (41) we can write
Hriun=0. 45)

As it can be seen in Figs. 1'and 2, the assumption described above is very poorly con-
firmed experimentally. Turbulent normal stresses observed in practise have different values,
especially near the wall. ‘ ,

Obviously, the suggestions presented above must be considered as preliminary proposals,
which will be the subject of another paper. :

- 3, Differential models of turbulence

According to the general idea of differential models, six independent components of
tensor IT are determined from the system of six scalar equations (6). This system contains
averaged products of fluctuating parameters and is not closed. Closure methods presented
in the bibliography are based on “gradient hypothesis™, which make use of relations simil-
ar to Eq. (31). In consequence differential models take over the aforementloned defects
of the diffusive family (although indirectly). ' P LT

The main fault which characterize the differential family of turbulence models relates to
the sign of normal stress I7;;. This value is non-positive from the definition (Eq. (3)), but itis
not proved so far that the form of (6) guarantees fulfilling of this condition. '~ : .

.. In order to demonstrate this menace let us consider the equation of kinetic energy of
turbulence conservatlon (26). For one-dimensional case (Fig. 1) we can wnte [5]

d dk du\> 008k i
118 VL )+ JR1 % ~0 :
dY( vk )+‘/ (dy) by . )

wath the scale of turbulence l = 0.41y. This equahon has been solved numerically, by the
Runge-Kutta method, for the boundary layer with the following boundary condmons

dk
y=0-k=0 and E’—-— p (gived value) 47

for ve]oclty profile #(y) like in Fig. 1..



ANALYSIS OF SPATIAL MODELS OF TURBULENCE 11

. +The results obtained are shown in Fig. 3 (in non-dimensional system ¥=y/d, K=kfu3,
Pe=pdlu,, 6. — boundary layer thickness, u,, — velocity for y=4J), for P=22—30. As we
can see there, the equation under consideration is very sensitive to the boundary conditions,
and formally can give negative values of k what is inadmissible physically.
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As the boundary conditions (except Eqs. (47)) the following inforﬁlétib'ns ‘can be used:

dk
y=4—k=k(given value) and YT 0. (48)
Using empmcal data (Fig. 1) we can write for the case under consrderatlon
e X=0- K=o ®
JIE 8] 0 7 odd dK
ool sil o 1, - —=P= 228 (b : P
. Taed v ¢ v dY () ] 3 > AEON BEg. o |
AN Shy oA o SIS TR i
Y=1 — K=00006.. . (c) - (49)
dK.
- —=0" d
dy (‘ )

Analysing curves presented in Fig. 3 we can state that:
— takingasa boundary condition the set (49 a, b) we have the solutlon K(Y) which is partly
. 1negative (Fig. 4);
—.for-Eqs. (49) a, ¢ we have calculated value P=24, different from the measured value
(Eq. (49 b)), and the calculated profile K(Y) differs from the observed curve (Fig: 4);
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— for the third possibility (boundary conditions described by Eqs. (49 a, d) we have even
greater difference between calculated and measured results than in the previous case
(Fig. 3). '
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In consequence we must state that similarly to the diffusive family of turbulence models
differential concept does not provide a complete tool, which can fully describe mean para-
meters of spatial turbulent flows.

4. Convective model of turbulence

Reassuming hitherto presented conclusions we must say that it is very purposeful to
maintain research works on improving existing and constructing new models of turbulence.

In this chapter a suggestion of such a new, “convective”, model will be presented [9, 11].
Let us start with the statement that pulsatory velocity #’ and mean velocity related to the bo-
undary v are connected by some transformation. Basing on empirical data we can assume
that this transformation is linear, so we have:

u'=Gv. (50)
Substituting Eq. (50) into (3) we have:

Hu= —pu; “3= —PA; im0V, - e (51)

The affinor G is very complex, so it is impossible to determine its components. In this

situation components of the affinor 4 (called “coefficients of turbulence’) were identified
empirically. . lad
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Making use of experimental results [11] the following values of these coefficients can be
proposed:
‘ Ajy=0,
Ay122=A43233=A43311=%

(53)

A133=43211=43322=%
A= —BT,; (when i#j)

- Empirical parameters a;, ,, @5 and f§ are defined as follows:

e

G-
() ()

ol (2

The term Tj; is a normalized i, j -component of the tensor S:
(v, [V)  8(vylV) 'L
T;= + - Sij-
a(HJijL) d(H,x/L)| V
The product A, ;,vv, describes components of the Reynolds tensor, according to (51).

Especially important is its value near the wall (when d—0). This question can be easily in-
vestigated for the one-dimensional case (Eq. (7)):

(35)

W11u|a=n= _P[alvl(é)]la=o=C%=—g-- (56)
According to the de 'Hospital theorem we can write:
Tfuula 0= Chmo—f%i—:n (57)
(n — normal to the wall), because:
% =1: £0. 58)

This result is consistent with experimental results (e.g. [2, 3]).

Symbol v,, in Eq. (54) denotes shear velocity, V' — characteristic velocity, 6 — distance
from the nearest boundary, L — characteristic linear scale of the phenomenon, H; — Lamé
parameters. Indices (i, j) determine the axes of the coordinate system:

i, j=x,y,z — Cartesian coordinates

i,j=x,r,¢ — cylindrical coordinates

i, j=6,r,p — spherical system
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It is an interesting thing that althoug this model has been derived in its original version
[9] from the relation (57), it shows some similarities to the diffusive concept. The considera-
tions presented above display that turbulent normal stress has the following structure in the
convective model (a stationary boundary, i.e. v=u):

Iy=—p oy 1} + oy uf +a3uf). (59)

Turbulent shear stress in turn can be written as follows:
L , o
H;j=pﬂ?u Su. ' e (60)

Comparing Eqs. (59), (60) with contents of the Chapter 2 we can notice that convective
model can be considered as a version of diffusive model, in which turbulent shear stress z,
and normal stress 7, has been separated. The first one has been described by means of the
Boussinesg-Prandtl hypothesis with scalar coefficient of eddy viscosity given by the fol-
lowing formula:

B 2
Tc=pﬁ7“2° (61)

The normal stress in turn is defined as a combination of the mean velocnty components
(related to the boundary of considered area). ;

Convective model of turbulence presents some advantages. It avoids all defacts of clas-
sical models, which were listed in previous chapters (examples of its applications and re-
sults — see [11]). In particular the condition of traces equality is fulfilled by proper choice
of the model parameters, in order that: :

trn=—2pk=—'p(al+az+a3)vza (62)

On the other hand we can enumerate the following flaws of the model:
— the model relates only to near-wall flows and does not describes free turbulence;
— constitutive equation (51) contains parameters ¥, L and »,,, which are not precisely de-
termined;
— convective theory does not make possible to determine all parameters, which are identi-
fied empirically.

However it seems that these defects do not disqualify the proposal described in this chap-
ter and it is purposeful to devote more efforts in order to obtain more adequate versions of
convective model of turbulence.

5. Conclusions

The paper is devoted to the problem of modelling of spatial turbulence, Analysis of
problem presented in the bibliography leads to the conclusion that two classical families of
turbulence models (diffusive and differential) do not enable us to obtain full description of
the averaged three-dimensional turbulent flow.
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In both cases the main reason of this fault resulis from the focm of turbulent normal
stresses. The diffusive family can be corrected by combining turbulent normal stress with
static pressure (Pascal assumption of isotropy). As an another example of Reynolds equa-
tions closure can serve a convective model of turbulence, presented in this paper.
~ ‘This article has been prepared under the Central Program of Basic Research CPBP

03.09.3.06.
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Analiza przestrzennych modeli turbulencji

Streszczenie

Praca poswigcona jest problemowi przestrzennego modelowania turbulencji. Przeanalizowano
warianty réwnan konstytutywnych prezentowanych w literaturze — od najprostszej zaleznosci jedno-
rodnej ze skalarnym wspolczynnikiem lepkosci burzliwej, do najogélniejszego rownania (34) w ramach
rodziny modeli ,,dyfuzyjnych’. Nast¢pnie poddano badaniu ogélng koncepcjg typu ,,rézniczkowego”.
Pozwolilo to stwierdzi¢, ze niezaleznie od sposobu szczegélowego okreslania wspolczynnika lepkoscel
burzliwej, propozycje literaturowe zawieraja caly szereg mankamentow, ktére nie pozwalajg stosowaé
ich z pelnym przekonaniem do opisu tréjwymiarowych przeplywéw turbulentnych.

Przedstawiono dwie propozycje innego rozwigzania problemu. Pierwsza z nich polega na dolg-
czeniu turbulentnych napregzenn normalnych do cisnienia statycznego, natomiast druga — nazwana
s konwekcyjnym modelem turbulencji”’ — stanowi nowa propozycje réwnania konstytutywnego, zgodnie
z ktora tensor Reynoldsa I7 jest liniowa funkcja diady utworzonej z wektora prgdkosci sredniej wzglgdem
scianki.
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AHa/IN3 TPOCTPANCTBEHHBIX MONEIH TYpPOy/IeHTHOCTH

ConepxaHnne

B craTee npeACTaBIEHO AHANH3 KJACCHYECKHX MONETH TYpOyNeBTHRIX TedeHul — ,,maddy3msapix”
o ,,qadpeperumansaex”. IToxasano, 4T0 HECMOTPA HA METOX BHIpAXeHHA KodpduumeHTOR TYpOYyNeRTHOM
BAIKOCTH, MOJe/H TypOYIeHTHOCTH CYIIECTBYIOIIME B IATEPATYPE NOCBALUCHHOM MeXaHUKe XKHIKOCTH He
Jal0T BO3MOXHOCTH ONHCATH 3a7a4y O MPOCTPAHCTBEHHHIM TEYeHHH.

TlpeacraBneHO OBe BO3MOXHOCTH pemmeHHA npobnema. Tleppasd H3 HEX 3aKIIIO4aeTcd B NO0ABICHAH
HOpMaJbHBIX TypOYJICHTHbIX HANPSAMEHLIH K cTaTHCTAYecKOMY NasieHmIO. [Tocnenyioman coOCTOMT B3 KOH-
BEKTHBHOH MOJIe/H TypOy/IeHTHOCTH, COTJIACHO KOTOPO# Ter30p PeliHoNb/Ca 3aBACHT OT cpefHell CKOPOCTH
JBIDKEHUA,



