Name:
Ryszard Staroszczyk, DSc

Position:
Associate Professor

Contact:
Instytut Budownictwa Wodnego
Polskiej Akademii Nauk
Kościerska 7
80-328 Gdańsk
phone: (+48)585222906
e-mail: rstar(at)ibwpan(dot)gda(dot)pl

Main research topics

Scientific disciplines: applied mechanics, civil engineering.

Scientific specializations: continuum mechanics, mechanics of two-phase media, structural dynamics.

Research interests:

  • mechanics of water-saturated soils (phenomena of pore pressure generation and liquefaction due to dynamic loads, propagation of seismic waves in water-saturated soils, dynamics of two-phase media);
  • mechanics of water waves (transient problems, solitary waves, interaction of water waves with engineering structures, free-surface flows, numerical methods);
  • sea ice dynamics (constitutive theories for sea ice, dynamic interaction of floating ice with engineering structures);
  • polar ice mechanics (constitutive modelling of creep-induced anisotropy of ice, phenomena of dynamic recrystallization of ice, polar ice-sheet flow modelling);
  • micro-mechanics (modelling of crystalline materials, homogenization methods for polycrystalline media);
  • discrete methods (finite-element method, mesh-free SPH and EFG methods, application of discrete methods in structural dynamics, hydrodynamics and geophysics). 

Books:

cover Ryszard Staroszczyk
Constitutive modeling of creep induced anisotropy of ice.
publisher: Wydawnictwo IBW PAN
ISBN: 83-85708-65-0
published in: 2004
language: EN

Summary: The book is devoted to the problem of constitutive modelling of creep induced anisotropy of ice which develops in the material as it is deformed during its movement from the free surface to depth in large polar ice sheets in Antarctica and Greenland. The evolution of the anisotropic structure of ice significantly changes macroscopic viscous properties of the medium and therefore affects the overall behaviour of polar ice caps. Three distinct methods are applied to formulate constitutive relations for ice. In the first method, microscopic flow laws are first derived for a single crystal of ice, and these are then used to determine the macroscopic creep response of the polycrystalline aggregate by averaging the responses of all constituent grains in the polycrystal. In the second approach, the microscopic flow laws for a single crystal are employed to construct the macroscopic constitutive relations by applying an orientation distribution function that describes directional properties of the medium. Finally, in the third method, the macroscopic constitutive laws are consistently derived as functions of only macroscopic variables. In the latter approach the evolution of the oriented structure in ice is described in terms of the changes in the principal directions in the macroscopic deformation field. All the proposed constitutive models are used to simulate the creep of anisotropic ice in simple flow configurations in order to correlate the model parameters with available experimental data. Finally, some of the models are employed to simulate the flow of large polar ice sheets.

Publications:

  1. Stachurska B., Staroszczyk R.: An investigation of the velocity field over rippled sand bottom. W: Full Proceedings: IJREWHS 2016, Logan/USA: IAHR—Utah State University, 2016, s. 122-131, doi:10.15142/T3ZP4F
  2. Staroszczyk R.: Rayleigh waves transformation in liquefying water-saturated sands. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 63, No.2-3, IBW PAN, 2016, s. 173-190, doi: 10.1515/heem-2016-0011
  3. Hesse C., Bielecka M., Stefanova A., Robakiewicz M., Staroszczyk R., Zalewski M., Khokhlov V., Tuchkovenko Y., Lloret J., Lencart e Silva J. D., Dias J. M., Lillebø A. I., Chubarenko B., Krysanova V.: Impacts of potential climate change on lagoons and their catchments. W: Coastal lagoons in Europe: integrated water resource strategies. Red. Ana I. Lillebø, Per Stalnacke, Geoffrey D. Gooch, IWA Publishing, 2015, s. 115-132
  4. Bielecka M., Robakiewicz M., Zalewski M., Khokhlov V., Tuchkovenko Y., Lloret J., Lencart e Silva J. D., Dias J. M., Lillebø A. I., Chubarenko B., Staroszczyk R.: Lagoons impact integrated scenarios: part 3. W: Coastal lagoons in Europe: integrated water resource strategies. Red. Ana I. Lillebø, Per Stalnacke, Geoffrey D. Gooch, IWA Publishing, 2015, s. 155-166
  5. Paprota M., Staroszczyk R., Sulisz W.: Modelling of an extreme wave attack on a seawall. W: 2nd International Workshop on Hydraulic Structures: Data Validation. Red. Rita F. Carvalho, Stefano Pagliara, Coimbra, Portugal: University of Coimbra, 2015, s. 163-170
  6. Staroszczyk R.: Incompressible SPH method for simulating violent free-surface flows. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 61, No. 1-2, Gdańsk: Wydawnictwo IBW PAN, 2014, s. 61-83
  7. Staroszczyk R.: Application of an element-free Galerkin method to water wave propagation problems. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 60, No. 1-4, Gdańsk: Wydawnictwo IBW PAN, 2013, s. 87-105
  8. Staroszczyk R.: A uniform stress, multi-grain model for migration recrystallization in polar ice. Acta Geophysica, Vol. 59, No. 5, 2011, s. 833-857
  9. Staroszczyk R.: Micro-mechanical modelling of dynamic recrystallization in polar ice: theory and numerical predictions. W: Proc. of XXV IUGG General Assembly. Earth on the Edge: Science for a Sustainable Planet, Melbourne: IUGG, 2011, CD ROM, paper No. 3918
  10. Staroszczyk R.: Simulation of solitary wave mechanics by a corrected smoothed particle hydrodynamics method. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 58, No. 1-4, Gdańsk: Wydawnictwo IBW PAN, 2011, s. 23-45
  11. Staroszczyk R., Paprota M., Sulisz W.: Solitary wave impact on a seawall. 2011, poster
  12. Staroszczyk R.: Simulation of dam-break flow by a corrected smoothed particle hydrodynamics method. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 57, No. 1, Gdańsk: Wydawnictwo IBW PAN, 2010, s. 61-79
  13. Staroszczyk R.: A Lagrangian finite element analysis of gravity waves in water of variable depth. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 56, No. 1-2, Gdańsk: Wydawnictwo IBW PAN, 2009, s. 43-61
  14. Staroszczyk R.: A multi-grain model for migration recrystallization in polar ice. Archives of Mechanics, Vol. 61, No. 3-4, Warszawa: IPPT PAN, 2009, s. 259-282
  15. Morland L. W., Staroszczyk R.: Ice viscosity enhancement in uni-axial compression and simple shear due to crystal rotation. International Journal of Engineering Science, Vol. 47, No. 11-12, 2009, s. 1297-1304
  16. Staroszczyk R.: Modelling of deformation-induced anisotropy in polycristalline materials. W: Proceedings of the 2008 Taiwan - Polish Joint Seminar on Coastal Protection. Red. Tai-Wen Hsu, Chia Chuen Kao, Tainan: National Cheng Kung University, 2008, s. C15-C26
  17. Staroszczyk R.: Modelling of polar ice sheet flows. Annual Report, Polish Academy of Sciences, Warszawa: PAN, 2008, s. 52-54
  18. Sawicki A., Staroszczyk R.: Stresses in a seabead due to water wave action. W: Geotechnics in maritime engineering. Proceedings of the11th Baltic Sea Geotechnical Conference: volume 2. Red. Zbigniew Młynarek, Zbigniew Sikora, Eugeniusz Dembicki, Gdańsk: Polish Committee on Geotechnics—Gdansk University of Technology, 2008, s. 743-748
  19. Sawicki A., Staroszczyk R.: Wave-induced stresses and pore presssures near a mudline. Oceanologia, Vol. 50, No. 4, 2008, s. 539-555
  20. Staroszczyk R.: A Lagrangian finite element treatment of transient free-surface waves in compressible viscous fluids. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 54, No. 4, Gdańsk: Wydawnictwo IBW PAN, 2007, s. 261-284
  21. Staroszczyk R.: Loads on an off-shore structure due to an ice floe impact. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 54, No. 2, Gdańsk: Wydawnictwo IBW PAN, 2007, s. 77-94
  22. Staroszczyk R.: Axi-symmetric ice sheet flow with evolving anisotropic fabric. Bulletin of the Polish Academy of Sciences - Technical Sciences, Vol. 54, No. 4, 2006, s. 419-428
  23. Staroszczyk R.: Loads exerted on a cylindrical structure by floating ice modelled as a viscous-plastic material. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 53, No. 2, Gdańsk: Wydawnictwo IBW PAN, 2006, s. 105-126
  24. Morland L. W., Staroszczyk R.: Steady radial ice-sheet flow with fabric evolution. Journal of Glaciology, Vol. 52, No. 177, Cambridge: International Glaciological Society, 2006, s. 267-280
  25. Staroszczyk R.: Loads exerted by floating ice on a cylindrical structure. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 52, No. 1, Gdańsk: Wydawnictwo IBW PAN, 2005, s. 39-58
  26. Staroszczyk R.: Constitutive modeling of creep induced anisotropy of ice, [Modelowanie konstytutywne anizotropii lodu wywołanej jego pełzaniem]. Gdańsk: Wydawnictwo IBW PAN, 2004, 201 s. (10 ark.)
  27. Staroszczyk R., Hedzielski B.: Creep buckling of a wedge-shape floating ice plate. Engineering Transactions, Vol. 52, No. 1-2, 2004, s. 111-130
  28. Staroszczyk R.: Finite element simulations of floating ice - engineering structure interactions. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 50, No. 3, Gdańsk: Wydawnictwo IBW PAN, 2003, s. 251-268
  29. Staroszczyk R.: Plain ice sheet flow with evolving and recrystallizing fabric. Annals of Glaciology, Vol. 37, 2003, s. 247-251
  30. Morland L. W., Staroszczyk R.: Strain-rate formulation of ice fabric evolution. Annals of Glaciology, Vol. 37, 2003, s. 35-39
  31. Morland L. W., Staroszczyk R.: Stress and strain-rate formulations for fabric evolution in polar ice. Continuum Mechanics and Thermodynamics, Vol. 15, No. 1, 2003, s. 55-71
  32. Staroszczyk R.: A uniform strain discrete-grain model for evolving anisotropy of polycrystalline ice. Archives of Mechanics, Vol. 54, No. 2, 2002, s. 103-126
  33. Staroszczyk R.: On the maximum horizontal forces exerted by floating ice on engineering structures. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 49, No. 4, Gdańsk: Wydawnictwo IBW PAN, 2002, s. 17-35
  34. Staroszczyk R.: An orthotropic constitutive model for secondary creep ice. Archives of Mechanics, Vol. 53, No. 1, 2001, s. 65-85
  35. Staroszczyk R.: A uniform stress, discrete-grain model for induced anisotropy of ice. W: Zastosowania mechaniki w budownictwie lądowym i wodnym. Księga Jubileuszowa poświęcona 70-leciu urodzin Profesora Piotra Wilde. Red. J. Kazimierz Szmidt, Gdańsk: Wydawnictwo IBW PAN, 2001, s. 295-314
  36. Staroszczyk R.: Mechanical properties of sea ice and their constitutive description. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 48, No. 1, Gdańsk: Wydawnictwo IBW PAN, 2001, s. 63-95
  37. Staroszczyk R., Morland L. W.: Strengthening and weakening of induced anisotropy in polar ice. Proceedings Royal Society, Seria A, Vol. 457, London, 2001, s. 2419-2440
  38. Staroszczyk R., Morland L. W.: Orthotropic viscous response of polar ice. Journal of Engineering Mathematics, Vol. 37, No. 1-3, 2000, s. 191-209
  39. Staroszczyk R., Morland L. W.: Orthotropic viscous model for ice. W: Proceedings of the 6th International Symposium: Advances in cold-region thermal engineering and sciences: technological, environmental, and climatological impact. Red. Kolumban Hutter, Y. Wang, H. Beer, Berlin, New York: Springer-Verlag, 1999, s. 249-258
  40. Staroszczyk R., Gagliardini O.: Two orthotropic models for strain-induced anisotropy of polar ice. Journal of Glaciology, Vol. 45, 1999, s. 485-494
  41. Schulkes R. M., Morland L. W., Staroszczyk R.: A finite element treatment of sea ice dynamics for different ice rheologies. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 22, No. 3, 1998, s. 153-174
  42. Morland L. W., Staroszczyk R.: A material co-ordinate treatment of the sea ice dynamics equations. Proceedings Royal Society, A, Vol. 356, London, 1998, s. 2819-2857
  43. Staroszczyk R.: Love wave-induced liquefaction in a saturated sand layer. Journal of Theoretical and Applied Mechanics, Vol. 36, No. 3, 1998, s. 723-744
  44. Morland L. W., Staroszczyk R.: Uni-axial wave propagation and pore pressure generation in fluid saturated sands exhibiting irreversible compaction. International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 22, 1998, s. 695-720
  45. Morland L. W., Staroszczyk R.: Viscous response of polar ice with evolving fabric. Continuum Mechanics and Thermodynamics, Vol. 10, No. 3, 1998, s. 135-152
  46. Sawicki A., Staroszczyk R.: Development of ground`s liquefaction due to surface waves. Archives of Mechanics, Vol. 47, No. 3, 1995, s. 557-576
  47. Staroszczyk R.: Energy dissipation in a saturated porous half-space under a vibrating rigid block. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 42, No. 3-4, Gdańsk: Wydawnictwo IBW PAN, 1995, s. 71-92
  48. Staroszczyk R.: Solution of Lamb`s steady-state plane problem for Biot`s medium by the finite element method. Archives of Hydroengineering, XL, 3-4, Gdańsk: Wydawnictwo IBW PAN, 1994, s. 67-82
  49. K. Szmidt, R. Staroszczyk, M. Śliwiński: Rozwiązanie przepływu cieczy wywołanego drganiami płyty sprężystej. W: Materiały VII konferencji "Metody komputerowe w mechanice konstrukcji", część IV, Gdynia, 1985, s. 924-933